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THE TWISTING SATO-TATE GROUP OF THE CURVE y2 = x8 − 14x4 + 1

SONNY ARORA, VICTORIA CANTORAL-FARFÁN, AARON LANDESMAN, DAVIDE LOMBARDO,
AND JACKSON S. MORROW

ABSTRACT. We determine the twisting Sato-Tate group of the genus 3 hyperelliptic curve

y2 = x8 − 14x4 + 1 and show that all possible subgroups of the twisting Sato-Tate group

arise as the Sato-Tate group of an explicit twist of y2 = x8 − 14x4 + 1. Furthermore, we
prove the generalized Sato-Tate conjecture for the Jacobians of all Q-twists of the curve

y2 = x8 − 14x4 + 1.

1. INTRODUCTION

In this paper, we prove the generalized Sato-Tate conjecture for all Q-twists of the genus
3 hyperelliptic curve y2 = x8 − 14x4 + 1, which corresponds to an isolated point in the
moduli space of genus 3 hyperelliptic curves due to its large geometric automorphism
group. In doing so, we exhibit a Q-twist of this curve with its full automorphism group
defined over Q, and to the authors’ knowledge, this is the first example of a curve over Q

with Sato-Tate distribution, the distribution of the normalized traces of Frobenius, given
by the measure

1

6π

∫b

a

√

4−

(
t

3

)2
dt

for all intervals [a,b] ⊂ [−6, 6].
We begin in subsection 1.1 and subsection 1.3 with some background on the general-

ized Sato-Tate conjecture. We then describe the special properties of the genus 3 curve
y2 = x8 − 14x4 + 1 in subsection 1.4, and conclude the introduction by elaborating on our
main results in subsection 1.6.

1.1. The generalized Sato-Tate conjecture. Let A be an abelian variety of dimension g
defined over Q. The generalized Sato-Tate conjecture predicts that the Haar measure of
a certain compact groupG, withG ⊂ USp(2g), governs the distribution of the normalized
Euler factors Lp(A, T), as p varies over the primes of good reduction ofA. The normalized

Euler factor at a prime p is the polynomial Lp(A, T) = Lp(A, T/p1/2), where Lp(A, T) is

the L-polynomial of A at p. Define αi so that Lp(A, T) =
∏2g
i=1(1− αiT). Recall that the

L-polynomial has the defining property that for each positive integer n,

#A(Fpn) =

2g∏

i=1

(1− αni ).

We now explain what we mean when we say G “governs” the distribution of the L-
polynomials. Serre [Ser12] has defined, using ℓ-adic monodromy groups, a compact real
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Lie subgroup of USp(2g) called the Sato-Tate group of A, denoted ST(A), satisfying the
following condition: for each p at which A has good reduction, there exists a conjugacy

class of ST(A) whose characteristic polynomial equals Lp(A, T) :=
∑2g
i=0 ai(A)(p)T

i. For
a brief summary of this construction, see [FKRS12, Section 2.1]. For i = 0, 1, . . . , 2g, let Ii

denote the interval
[
−
(
2g
i

)
,
(
2g
i

)]
, and consider the map

Φi : ST(A) ⊂ USp(2g) −→ Ii ⊂ R

that sends an element of ST(A) to the ith coefficient of its characteristic polynomial. Let
µ(ST(A)) denote the Haar measure of ST(A) and let Φi ∗(µ(ST(A))) denote the pushfor-
ward of the Haar measure on Ii. We now state the generalized Sato-Tate conjecture.1

Conjecture 1.2 (Generalized Sato-Tate). For each i = 0, 1, . . . , 2g, the ai(A)(p)’s are equidis-
tributed, with respect to increasing size, on Ii with respect toΦi ∗(µ(ST(A))).

1.3. Progress on proving the generalized Sato-Tate conjecture. The classical Sato-Tate
conjecture is concerned with the case thatA is an elliptic curve over Q without CM. Here,
g = 1 and ST(A) ∼= USp(2) ∼= SU(2). This form of the conjecture was recently proved
in culmination of a project several years in the making; see [Ser12, Example 8.1.5.2] for a
complete list of references. For elliptic curves E with CM over a general number field K,
there are two cases. If E has CM defined over K, then ST(E) ∼= U(1) where U(1) →֒ SU(2)
via u 7→

(
u 0
0 u

)
. If E has CM not defined overK, then ST(E) is isomorphic to the normalizer

of U(1) in SU(2).
The recent work of Fité, Kedlaya, Rotger, and Sutherland has presented an explicit

version of the generalized Sato-Tate conjecture for abelian surfaces over number fields K.
The classification in [FKRS12, Table 8] gives a description in the form of explicit equations
of curves whose Jacobians realized each of the 52 Sato-Tate groups that can and do arise
for abelian surfaces. The authors of [FKRS12] also show that only 34 of these arise for
Jacobians of genus 2 curves defined over Q. In [FS14], the authors prove that 18 of these
34 subgroups can be realized as the Sato-Tate group of a Q-twist of either the curve y2 =
x5 − x or y2 = x6 + 1 and that the generalized Sato-Tate conjecture holds for the Jacobians
of Q-twists of the aforementioned curves.

For higher dimensional abelian varieties, there have been a few sporadic results which
we briefly recall. Fité and Sutherland [FS16] provide effective algorithms to compute the
traces of Frobenius at primes of good reduction for the curves y2 = x8+ c and y2 = x7− cx
and determine the Sato-Tate groups that arise generically and for specific c ∈ Q∗. In
her thesis [Lor14], Lorenzo, in joint work with Fité and Sutherland, computed the Sato-
Tate groups and Sato-Tate distributions for Q-twists of the Fermat and Klein quartics and
proved Conjecture 1.2 for the Jacobians of these curves. Another result worth mentioning
is [FKS16], where the authors establish a group-theoretic classification of Sato-Tate groups
of self-dual motives of weight 3 with rational coefficients and prescribed Hodge numbers.

In this article, we continue the investigation of Sato-Tate in genus 3 by computing the
Sato-Tate groups of the Jacobians of Q-twists of the genus 3 curve y2 = x8 − 14x4 + 1 and
proving the generalized Sato-Tate conjecture for such twists.

1The generalized Sato-Tate conjecture naturally extends to abelian varieties defined over number fields K,
however we shall only be concerned with the case of K = Q.
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Notation. Throughout, let Q denote a fixed algebraic closure of Q, and letGQ := Gal(Q/Q)
denote the absolute Galois group of Q. For any algebraic variety X defined over Q and
any extension L/Q, we use XL to denote the algebraic variety obtained over L by the
base change of Q →֒ L. For abelian varieties A and B defined over Q, we write A ∼L B
(resp.A ∼ B) to indicate that there is an isogeny betweenA and B defined over L (resp. Q).

1.4. An isolated point in the moduli space of genus 3 hyperelliptic curves. Let C0 de-
note the hyperelliptic curve y2 = x8 − 14x4 + 1 defined over Q. In this paper, we first
compute the twisting Sato-Tate group STTw(C0), which is a compact Lie group with the
property that the Sato-Tate group of the Jacobian of any twist of C0 is isomorphic to a
subgroup of STTw(C0).

In [GSS12, Table 1], the authors determine the automorphism groups of genus 3 hy-
perelliptic curves. The curve C0 is particularly fascinating, because the geometric au-

tomorphism group of C0 is isomorphic to S4 × Z/2Z, and, up to Q-isomorphism, C0
is the unique genus 3 hyperelliptic curve with # Aut((C0)Q

) = 48. Further, there are

no genus 3 hyperelliptic curves with automorphism group of size more than 48 and
JacC0 ∼

Q
E3 where E is the non-CM elliptic curve y2 = x4 − 14x2 + 1. Magma computes

that Aut(C0) ∼= (Z/2Z)3 and that all of the automorphisms of C0 are defined over Q(ζ8).
For computational reasons, we shall primarily work with the Q(ζ8)-twist C of C0 de-

fined by y2 = x8 + 14x4 + 1. We compute that Aut(C) ∼= D8 and that all of the automor-
phisms of C are defined over Q(i). In section 4, we shall determine a twist C ′ of C with
its full geometric automorphism group defined over Q. For convenience, we record the
defining equations for these three twists:

C0 : y
2 = x8 − 14x4 + 1 C : y2 = x8 + 14x4 + 1 C ′ :

{
x2 + y2 + z2 = 0

−2t2 = x4 + y4 + z4,
(1.4.1)

where the latter curve C ′ lives in the weighted projective space PQ(1, 1, 1, 2) with vari-
ables x,y, z of weight 1 and t of weight 2.

Remark 1.5. The family of Q-twists of C is interesting, not only due to the extremal,
geometric automorphism group, but also because they are twists of the modular curve
X0(48); this can be checked with the Magma intrinsic

SimplifiedModel(SmallModularCurve(48));

By [BN15], X0(48) is one of two hyperelliptic modular curves whose hyperelliptic involu-
tion does not correspond to the Atkin-Lehner involution, and via loc. cit. Theorem 6, the
points on X0(48) give rise to an infinite isogeny class with maximal size, namely 16, of
elliptic curves over quadratic fields.

1.6. Main results. In this paper, we show that all possible subgroups of the twisting Sato-
Tate group of C0 (see Definition 2.5) arise as the Sato-Tate groups of twists of C0. We also
give explicit equations for a representative curve with every such subgroup; see Table 1.
Using this classification, we prove the generalized Sato-Tate conjecture for all Q-twists of
C0.

Theorem A. Let C̃ be a Q-twist of C0.
3



(1) There are exactly 9 distinct possibilities for the Sato-Tate group ST(Jac C̃), and an explicit

twist C̃ realizing each Sato-Tate group is given in Table 1.

(2) For i = 0, . . . , 6, the ai(C̃)(p) are equidistributed on Ii =
[
−
(
6
i

)
,
(
6
i

)]
with respect to a

measure µ(ai(C̃)) that is uniquely determined by the Sato-Tate group ST(Jac(C̃)).

(3) Conjecture 1.2 holds for C̃.

We prove Theorem A(1) in section 4.4 after we compute the twisting Sato-Tate group
of C in Lemma 3.3. In Propositions 5.6 and 5.13, we compute pushforwards of measures
determined by the distinct Sato-Tate groups and establish Theorem A(2). Finally, in The-
orem 5.14, we complete the proof of Theorem A(3).

Remark 1.7. In this paper, we give an example of a curve, namely C ′ from (1.4.1), over Q,
whose Sato-Tate distribution is given by the measure

1

6π

∫b

a

√

4−

(
t

3

)2
dt,

where [a,b] ⊂ [−6, 6]. Although examples of a curve over Q with such a distribution were
likely known to the experts, to the authors’ knowledge, all previous in print examples of

curves with such a distribution were defined over an extension of Q, such as Q(
√
−3).

This twist has the interesting property that it is hyperelliptic after base change to Q, but
it does not have a degree 2 map to P1Q defined over Q.

1.8. Organization. The outline of this paper is as follows: In section 2, we recall the defi-
nition of the algebraic Sato-Tate group [BK15] and the twisting algebraic Sato-Tate group
[FS14]. In section 3, we compute the twisting algebraic Sato-Tate group of the curve
y2 = x8 − 14x4 + 1. In section 4, we construct an explicit twist of C0 with all automor-
phisms defined over Q, and use this twist to compute explicit models for all other twists
along with the corresponding Sato-Tate groups. Then, in section 5, we prove the gen-
eralized Sato-Tate conjecture for all twists of C0. In section 6 we compute the moment
sequences of all twists of C0. In the appendix, section A, we include an application of our
classification of twists of C0, showing that the only Sato-Tate group of a 3-dimensional
abelian variety whose first moment sequence agrees with that of C ′ is SU(2)3. Finally,
in section B, we give a table summarizing key properties of the twists of C and three
tables displaying the first few theoretical and experimental values of the three moment
sequences associated to the twists of C.

1.9. Acknowledgements. This project was completed as part of a 2016 Arizona Winter
School project under the direction of Andrew V. Sutherland. We thank the organizers of
the winter school for cultivating an environment which led to the development of this
project. We also wish to thank Noam Elkies, Francesc Fité, Elisa Lorenzo Garcı́a, Andrew
V. Sutherland, and David Zureick-Brown for helpful conversations. Finally, we thank
Andrew V. Sutherland for providing us with a “photo album” for the Sato-Tate distribu-
tions of our twisted family.2 The computations in this paper were performed using Magma

[BCP97].

2This can be found at http://math.mit.edu/~drew/aws/g3AWSProjectSatoTateDistributions.html.
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2. BACKGROUND

After specifying our conventions for the matrix groups U(6), Sp(6) and USp(6), we
recall the definition of the twisting algebraic Sato-Tate group and the twisting Sato-Tate
group.

Definition 2.1. Set

J :=




0 1
−1 0

0 1
−1 0

0 1
−1 0




and for K a field, define

Sp(6)/K := {M ∈ GL(6)/K :MtJM = J}.

We often omit K when K is clear from context. When K = R is the field of real numbers,
we also define

U(6)/R := {M ∈ GL(6)/C :MHM = id},

where MH is the Hermitian conjugate of M. We then define

USp(6)/R := U(6)/R ∩ Sp(6)/R.

Let A be an abelian variety of dimension ≤ 3 defined over Q. Fix an embedding

ι : Q →֒ C and a symplectic basis for the singular homology group H1(A
top
C

, Q) where
the superscript refers to the underlying topological space. We can use this basis to equip
this space with an action of GSp(2g)/Q. For each τ ∈ GQ, define the twisting Lefschetz
group by

L(A, τ) :=
{
γ ∈ Sp(2g) : γ−1αγ = τα for all α ∈ End(AQ)⊗ Q

}
. (2.1.1)

Definition 2.2. We define the algebraic Sato-Tate group of A, notated AST(A), as the
union

AST(A) =
⋃

τ∈GQ

L(A, τ).

We also define the Sato-Tate group of A, notated ST(A), as a maximal compact subgroup
of AST(A)⊗Q C; see [BK15, Theorem 6.1, Theorem 6.10].

Remark 2.3. The Sato-Tate group is not invariant under arbitrary twisting, however, it is
invariant under quadratic twisting which acts through the hyperelliptic involution; see
[FS14, Remark 2.1].

In this paper, we shall only be concerned with the case where A = JacC where C is
a genus 3 hyperelliptic curve over Q, and hence we shall notate AST(C) := AST(JacC)
and ST(C) := ST(JacC). Using the identification of H1 of the Jacobian with the tangent

space to the Jacobian, we may view Aut(C) as a subgroup of GL(H1(JacC
top
C

), Q). This
identification allows us to define the twisting algebraic Sato-Tate group.
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Definition 2.4. The twisting algebraic Sato-Tate group of C is the algebraic subgroup of
Sp(2g)/Q defined by

ASTTw(C) := AST(JacC) · Aut(CQ).

Let C̃ be a twist ofC, meaning that C̃ is defined over Q and there exists a finite extension

L/Q with C̃L ∼= CL. Let φ : C̃L → CL be a fixed isomorphism. By considering the induced

isomorphism H1(Jac C̃
top
C

, Q) → H1(JacC
top
C

, Q), which we denote as φ̃, we see that

L(Jac C̃, τ) = φ̃−1 L(JacC, τ)(τφ̃). (2.4.1)

If we identity γ ′ ∈ L(Jac C̃, τ) with φ̃−1γ(τφ̃) with γ ∈ L(JacC, τ), then [FS14, Lemma 2.3]
asserts that the map

Λ
φ̃
: AST(Jac C̃) −→ ASTTw(C)

γ ′ 7−→ γ(τφ̃)φ̃−1

is a well-defined monomorphism of groups. This lemma allows us to define the twisting
Sato-Tate group of C.

Definition 2.5. The twisting Sato-Tate group STTw(C) of C is a maximal compact sub-
group of ASTTw(C)⊗ C.

Remark 2.6. From [FS14, Lemma 2.3], we have that for any twist C̃ of C, the Sato-Tate
group ST(C) is isomorphic to a subgroup of STTw(C). Further, the component groups of
STTw(C) and ASTTw(C)⊗ C are isomorphic, and the identity components of STTw(C) and
ST(C) are equal.

We conclude this section with a proposition which informs us as to which subgroups
can arise as Sato-Tate groups of twists of a particular curve. First, we recall the following
simple but fundamental lemma, describing the action of twisting on the twisting Lef-
schetz group of a curve.

Lemma 2.7 ([FKRS12, Definition 2.20]). LetC/Q be a curve and let ξ be a continuous 1-cocycle
ξ : GQ → Aut(CQ). Let Cξ be the twist of C by ξ. For all τ ∈ GQ the following equality holds:

LCξ(τ) = LC(τ)ξ(τ)
−1.

Proposition 2.8. Let C/Q be a curve such that Aut(C) = Aut(C
Q
) and let G ∈ Aut(C) be a

subgroup such that the inverse Galois problem for G has a solution. Then there exists a twist CG

of C, defined over Q, such that ST(CG)/ ST(CG)0 = G.

Remark 2.9. Notice that ST(CG)/ ST(CG)0 = G is an actual equality and not just an abstract
isomorphism. By [FS14, Lemma 2.3], we have a canonical monomorphism

ST(CG) →֒ AST(CG) →֒ ASTTw(C)

which induces an injection ST(CG)/ ST(CG)0 →֒ STTw(CG)/ STTw(C
G)0. The equality

above is to be interpreted as relative to this embedding.
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Proof. Recall that twists of C are in bijection with cohomology classes in H1(GQ, Aut(C)).
Given that the Galois action on Aut(C) is trivial, a cocycle representing such a coho-
mology class amounts to a continuous homomorphism ξ : GQ → Aut(C). Fix a Ga-
lois extension L of Q such that Gal(L/Q) ∼= G and choose as ξ the canonical projection
GQ → Gal(L/Q) followed by an (arbitrary) isomorphism Gal(L/Q) ∼= G. We shall show

that one can take CG to be Cξ, the twist of C corresponding to ξ.
By our construction of C, we know that for all τ ∈ GQ we have

LC(τ) = LC(id) = LC(id)
0,

and hence
AST(Cξ) =

⋃

τ∈G
LCξ(τ) =

⋃

τ∈G
LC(id)ξ(τ)

−1.

Therefore, AST(Cξ), seen as a subgroup of ASTTw(C) = ASTTw(C), is precisely the union
of those connected components that intersect the image of ξ. By construction of ξ, this
implies that the group of components of AST(Cξ) isG. Since ST(Cξ) is a maximal compact
subgroup of AST(Cξ)⊗Q C, we have that

ST(Cξ)/ ST(Cξ)0 = AST(Cξ)/ AST(Cξ)0 = G.

�

3. THE TWISTING ALGEBRAIC SATO-TATE GROUP

The main result of this section is Proposition 3.4, in which we determine the twisting
Sato-Tate group for the curve C. In order to compute the twisting Sato-Tate group, we
first compute the algebraic Sato-Tate group in Lemma 3.3. To do this, we now compute
the decomposition of the Jacobian of C in Lemma 3.1.

Lemma 3.1. The Jacobian of C decomposes as JacC ∼ (E1)
2 × E2 where

E1 : y
2 = x3 − x2 − 4x+ 4,

E2 : y
2 = x3 + x2 − 4x− 4

are non-CM elliptic curves; moreover End(JacC)⊗Z Q = M2(Q)× Q.

Proof. By computing curve quotients using Magma’s intrinsic

CurveQuotient(AutomorphismGroup(C,[a]));

where a∈ Aut(C), we see that JacCQ ∼ E1 × E2 × E3 where E1, E2 are defined above and
E3 is some elliptic curve. Since End(JacC) is non-commutative and Aut(C) embeds into
End(JacC), we have that E3 is isogenous to either E1 or E2, and by considering local zeta
functions, we conclude that E3 ∼ E1. The statement that End(JacC)⊗Z Q = M2(Q)× Q

follows from the curves being non-CM. �

Remark 3.2. Recall that as mentioned in subsection 1.4, all automorphisms of C are de-
fined over Q(i). Analogously to [FS14, Lemma 4.2], one can show that the minimal num-
ber field over which all the automorphisms of CQ are defined coincides with the minimal

number field over which all the endomorphism of (JacC)
Q

are defined; since JacC de-

composes up to isogeny as the product of three non-CM elliptic curves, we do not need
to invoke any auxiliary results.
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Lemma 3.3. We have that

AST(C) =









M

M

±M



 :M ∈ SU(2)





.

Proof. Since all of the automorphisms of C are defined over Q(i), Remark 3.2 asserts that
all of the endomorphisms of JacC are defined over Q(i). Moreover, the action of GQ

on End((JacC)Q) must factor through Q(i). To explicitly compute the twisting Lefschetz

group, we need to consider how Gal(Q(i)/Q) = 〈δ〉, where δ denotes complex conjuga-
tion, acts on End((JacC)

Q
).

Since the action of Galois will fix the diagonal matrices, one can check (using implicitly
our description of End(JacC) from Lemma 3.1) that Galois acts via




a11 a12 a13
a21 a22 a23
a31 a32 a33



 7→




a11 a12 −a13
a21 a22 −a23
−a31 −a32 a33



 .

To complete the proof, it suffices to check

L(Jac(C), id) =








M 0 0

0 M 0

0 0 M


 :M ∈ SL(2)





,

L(JacC, δ) =








M 0 0

0 M 0

0 0 −M


 :M ∈ SL(2)





.

We can check these directly from the definition. To compute L(JacC, id), taking

α =




id 0 0

0 0 0

0 0 0



 ,γ =




a11 a12 a13
a21 a22 a23
a31 a32 a33





the condition that γα = αγ implies a12 = a13 = a21 = a31 = 0. Similarly, taking α to be
other block matrices with eight of the blocks equal to 0, and the ninth equal to the identity,
we obtain aij = 0 if i 6= j and a11 = a22 = a33, as claimed. The computation for L(JacC, δ)

is analogous, this time using that αγ = δαγ as α ranges over the matrices with a single
nonzero block which is equal to the identity. �

Before we compute the twisting Sato-Tate group of C, we introduce the following nota-
tion. Let

SL(2)3 :=

〈


M

M

M



 :M ∈ SL(2)

〉

denote the diagonal embedding of SL(2) inside Sp(6); the image of SU(2) under this em-
bedding will likewise be denoted by SU(2)3.

8



Proposition 3.4. The twisting algebraic Sato-Tate group of C is

ASTTw(C) =

〈
SL(2)3,



0 0 id
id 0 0

0 id 0


 ,




0 id 0

− id 0 0

0 0 id



〉

⊂ Sp(6),

and hence the twisting Sato-Tate group of C is

STTw(C) =

〈
SU(2)3,




0 0 id
id 0 0

0 id 0



 ,




0 id 0

− id 0 0

0 0 id




〉

⊂ USp(6).

Proof. By Definition 2.4, it suffices to realize the generators of Aut(C
Q
) as a subgroup

of Sp(6), which we accomplish by computing the action of Aut(C
Q
) on JacC. First, we

identify the tangent space to JacC at the identity with the space of regular differentials,
which has basis given by the following differentials:

ω1 :=
2x

y
dx, ω2 :=

(1− x2)

y
dx, ω3 :=

(1+ x2)

y
dx. (3.4.1)

Using Magma, we compute that Aut(C
Q
) = Aut(CQ(i)) = 〈ι,α1,α2〉, where ι is the hyper-

elliptic involution and

α1 : (x,y) 7−→
(
−i(x− 1)

(x+ 1)
,

−4y

(x+ 1)4

)
,

α2 : (x,y) 7−→
(
−i(x+ i)

(x− i)
,

4y

(x− i)4

)
.

By pulling backωi along ι, α1, α2, we realize Aut(C
Q
) as the subgroup of Sp(6) generated

by 〈


− id 0 0

0 − id 0

0 0 − id


 ,



0 0 − id
id 0 0

0 id 0


 ,




0 id 0

− id 0 0

0 0 id



〉

.

This implies the first statement in the proposition, because − id is already an element of
SL(2)3 The second statement follows immediately from the first upon noticing that SU(2)
is a maximal compact subgroup of SL(2) and it contains − id. �

Remark 3.5. For the rest of the paper, we shall consistently use the differentialsω1,ω2,ω3
as defined in (3.4.1) as a basis for the tangent space to JacC at the identity. This choice
of coordinates allows us to identify STTw(C) with the concrete subgroup of USp(6) given
in the statement of Proposition 3.4. The explicit description of STTw(C) also enables to
compute its group of components, which is easily seen to be isomorphic to the subgroup
of GL3(Z) generated by

σ :=



0 0 1

1 0 0

0 1 0


 τ :=




0 1 0

−1 0 0

0 0 1


 .

Moreover, we see that STTw(C)/ STTw(C)0 is isomorphic to S4 by sending σ 7→ (143) and
τ 7→ (1234). We will find it useful to have one further description of the group of com-
ponents of ST(C). Notice that σ and τ generate precisely the (octahedral) subgroup O of
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GL3(Z) consisting of signed permutation matrices with positive determinant. Further-
more, the group of all 3× 3 signed permutation matrices is O×Z/2Z (where the factor
Z/2Z is generated by − id), hence it is isomorphic to S4 × Z/2Z ∼= Aut(C

Q
). We shall

use these identifications to write STTw(C)/ STTw(C)0 as an index-2 subgroup of Aut(C
Q
),

which in turn we can consider as a subgroup of GL3(Z).

4. THE RIGHT TWIST

Given C we now find the twist C ′ with full geometric automorphism group defined
over Q and whose Jacobian has connected Sato-Tate group. As described in Remark 4.2,
it is not difficult to show C ′ is a twist of C with the desired properties, but we prefer to
illustrate how one would look for C ′ in the proof of Proposition 4.1.

Proposition 4.1. The curve C ′ in weighted projective space PQ(1, 1, 1, 2) defined by
{
x2 + y2 + z2 = 0

−2t2 = x4 + y4 + z4

where the variables x,y, z have weight 1 and t has weight 2 is a twist of C with Aut(C ′) ∼=
Aut(CQ) and for which ST(C) is connected.

Remark 4.2. It is easy to check using Magma’s intrinsic AutomorphismGroup that the auto-
morphism group of the twist C ′ is S4 × Z/2Z, but we write out this proof to illustrate
how to find the twist with a prescribed connected component of its Sato-Tate group. In
the proof, we show that C ′ corresponds to the cohomology class in H1(GQ, Aut(CQ)) of

the unique cocycle that factors through Gal (Q(i)/Q) and sends the nontrivial element of
this group to the automorphism

(x,y) 7→
(
−
1

x
,−
y

x4

)

of C.

Proof. Recall from Lemmas 3.3 and 2.7 that for all σ ∈ GQ, we have LC(σ) = LC(id) · π(σ),
where

π : GQ −→ GSp(6)/Q

σ 7−→






id if σ acts trivially on Q(i),


id
id

− id


 otherwise.

Let ξ : GQ → Aut(CQ) be a cocycle. We have

AST(JacCξ) =
⋃

σ∈GQ

LCξ(σ) =
⋃

σ∈GQ

LC(σ)ξ(σ)
−1 =

⋃

σ∈GQ

LC(id)π(σ)ξ(σ)
−1.

(4.2.1)

So, in order for ST(JacCξ) to be connected, it is necessary and sufficient that π(σ)ξ(σ)−1

be an element of LC(id) for all σ ∈ GQ.
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Now notice that 


id
id

− id


 ∈ Aut(JacC)

is induced by the automorphism (x,y) 7→
(
−1
x ,− y

x4

)
of C, so π itself can be interpreted

as a cocycle with values in Aut(C
Q
). Indeed, it is the unique continuous homomorphism

GQ → Aut(C
Q
) that factors through Gal (Q(i)/Q) and sends the nontrivial element of this

latter group to the automorphism ψ : (x,y) 7→
(
−1
x ,− y

x4

)
. To check that this is indeed a

cocycle, we simply notice that ψ is defined over Q, so a cocycle with values in {id,ψ} is a
(continuous) homomorphism with values in this group.

If we now take ξ = π, formula (4.2.1) shows that

AST(JacCξ) =
⋃

σ∈GQ

LC(id)π(σ)π(σ)
−1 = LC(id),

so that AST(JacCξ) is connected. By Definition 2.2, ST(Cξ) and AST(Cξ) have the same
group of connected components, and hence the Sato-Tate group of Cξ is connected.

We now want to compute explicit equations for Cξ. In order to do this, recall that the
function field of Cξ can be identified with the set of fixed points for a certain action of GQ

on Q(C). More precisely, an element σ ∈ GQ acts on Q(C) = Q(x,y) by the rule





σ · x = −1
x

σ · y = −y/x4

σ · α = σ(α) ∀α ∈ Q.

Observe that the three functions

a := x−
1

x
, b := i

(
x+

1

x

)
, c := i

y

x2

are invariant under this Galois action, and we claim that they generate the function field

of Q(Cξ). To show this, it suffices to prove that (after extending the scalars to Q) they

generate Q(C) = Q(x,y). This holds because we have

x =
ia+ b

2
, y =

cx2

i
=
c

i

(
ia+ b

2

)2
.

Furthermore, the functions a,b, c satisfy a2 + b2 = −4 and c2 + a4 + 4a2 + 16. By consid-
ering these equations in weighted projective space PQ(1, 1, 1, 2), our twist is defined by
the equations {

a2 + b2 + c2 = 0

d2 − a2b2 + c4 = 0,

where the variables a,b, and c have weight 1 and d has weight 2. Since

a2b2 =
1

2
(a2 + b2)2 −

1

2
(a4 + b4) =

1

2
(c4 − a4 − b4)

11



we have

d2 = a2b2 − c4 =
1

2
(c4 − a4 − b4) − c4 = −

1

2
(a4 + b4 + c4).

So, we can realize the model for our curve C ′ as
{
a2 + b2 + c2 = 0

−2d2 = a4 + b4 + c4.

Replacing (a,b, c,d) by (x,y, z, t) yields the result. �

Remark 4.3. This model helps clarify the action of the automorphism group S4 × Z/2Z.
The hyperelliptic involution sends t to −t, while S4 acts on (x,y, z) through the well-
known isomorphism

S4 ∼= {±1}3⋊ S3/〈(−1,−1,−1, id)〉;
that is, an element in S4 induces a permutation of (x,y, z), followed by a change of sign of
some of these three coordinates. Notice that in weighted projective space [x : y : z : t] and
[−x : −y : −z : t] are the same point, because t has weight 2 while the others have weight
one.

4.4. Groups arising as component groups of ST(Cξ) for some twist Cξ. In this subsec-
tion, we obtain a complete list of twists of C ′ whose Sato-Tate groups realize all possible
subgroups of STTw(C ′). Recall that Shafarevich [Sha58] proved that every finite solvable
group is realizable as a Galois group of a number field. Since S4 is solvable, Proposition
2.8 asserts that there are at most 11 Sato-Tate groups arising from the 11 conjugacy classes
of S4, which we recall in Table 1. In the next lemma, we prove that only 9 of these con-
jugacy classes correspond to distinct Sato-Tate groups, which yields a proof of Theorem
A(1).

Lemma 4.5. Conjugacy classes 2 and 3 from Table 1 correspond to isomorphic Sato-Tate groups.
More concretely, consider the subgroups of USp(6) given by

G2 :=

〈
SU(2)3,




0 id 0

id 0 0

0 0 id




〉

and G3 :=

〈
SU(2)3,




− id 0 0

0 id 0

0 0 id




〉
;

there exists an element g ∈ USp(6) such that gG2g
−1 = G3. Likewise, conjugacy classes 5 and 6

from Table 1 also correspond to isomorphic Sato-Tate groups, that is, the groups

G5 :=

〈
SU(2)3,




± id 0 0

0 ± id 0

0 0 ± id




〉

, G6 :=

〈
SU(2)3,




0 id 0

id 0 0

0 0 id



 ,




− id 0 0

0 − id 0

0 0 id




〉

are conjugate in USp(6). All other conjugacy classes give pairwise non-isomorphic Sato-Tate
groups.
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Proof. First, notice that the last statement is immediate, since Sato-Tate groups that have
non-isomorphic component groups correspond to different conjugacy classes. Let

g :=




0 1/
√
2 0 −1/

√
2 0 0

−1/
√
2 0 1/

√
2 0 0 0

0 −1/
√
2 0 −1/

√
2 0 0

1/
√
2 0 1/

√
2 0 0 0

0 0 0 0 0 1
0 0 0 0 −1 0




.

One checks that the equalities ggT = id and gT Jg = J hold for J in Definition 2.1, so that
g ∈ USp(6). Furthermore, we have

g



0 id 0

id 0 0

0 0 id


 g−1 =




− id 0 0

0 id 0

0 0 id




and

gdiag3
(
a b
c d

)
g−1 = diag3

(
d −c
−b a

)
,

where by diag3(M) denotes the 6× 6 matrix that is block-diagonal with 3 identical 2× 2
blocks given by M. This shows that conjugation by g stabilizes SU(2)3 and sends G2 to
G3 as claimed. Finally, one checks that

g




− id 0 0

0 − id 0

0 0 id


 g−1 =




− id 0 0

0 − id 0

0 0 id


 ,

which (combined with the first part of the lemma) easily implies the claim about G5 and
G6. �

As in Proposition 4.1, we can compute twists of C ′ whose Sato-Tate group has group of
components isomorphic to a specific subgroup of S4. We now provide another detailed
example to illustrate this technique.

4.6. A Z/4Z-twist. We show how to compute a twist of C ′ whose Sato-Tate group has
group of components isomorphic to Z/4Z. According to section 4.4, a twist Cξ will have
this property precisely if the image of ξ : GQ → Aut(C ′) is a cyclic group of order 4,
which means that the kernel of ξ defines a degree-4 cyclic extension of Q. Among all
such extensions, the one with smallest discriminant is the cyclotomic field Q(ζ), where

ζ is a primitive 5th root of unity. Since we are free to choose ξ, we take ker ξ to be

Gal
(
Q/Q(ζ)

)
. To completely describe ξ, we now need to choose an injective homomor-

phism of Gal (Q(ζ)/Q) into Aut(C ′). As a generator of Gal (Q(ζ)/Q), we take the unique
automorphism σ of Q(ζ)/Q that sends ζ to ζ2, and we define our ξ by requiring that
ϕ := ξ(σ) ∈ Aut(C ′) acts on the function field Q(C ′) as follows:

ϕ(t/z2) = t/z2, ϕ(x/z) = −y/z, ϕ(y/z) = x/z.

In order to compute equations for the twist Cξ, simply recall (see for example [Sil09,
Chapter X.2]) that the function field Q(Cξ) is the fixed field of Q(ζ)(C ′) under the twisted

13



Galois action given by

σ(ζ) = ζ2 σ(x/z) = ϕ(x/z) = −y/z
σ(y/z) = ϕ(y/z) = x/z σ(t/z2) = ϕ(t/z2) = t/z2.

We now determine the field of invariants for this action. Clearly t/z2 is fixed under
Galois. For all j ∈ Z we have another invariant function given by

∑

g∈Gal(Q(ζ)/Q)

g · (ζjx/z).

Taking j = 1 and j = 2, we find that the functions u and v given by
(
u
v

)
:=

(
ζ− ζ4 ζ3 − ζ2

ζ2(1− ζ) ζ
(
1− ζ3

)
)(

x/z
y/z

)
(4.6.1)

are Galois invariants. Since the matrix appearing in this formula is invertible over Q(ζ),
the function fields Q(ζ)(u, v, t/z2) and Q(ζ)(x/z,y/z, t/z2) coincide. Hence the curve
(defined over Q) whose function field is Q(u, v, t/z2) becomes isomorphic to C ′ over
Q(ζ); in other words, we have already found generators for the full field of invariants.
Now we just need to find the equations satisfied by u, v and t/z2. Defining M to be the
2× 2matrix appearing in (4.6.1), we can write

(
x/z
y/z

)
=M−1

(
u
v

)
=

1

1− ζ2 − 2ζ3 + 2ζ4

( (
ζ2 + ζ+ 1

)
u+ ζv

ζu−
(
ζ2 + ζ+ 1

)
v

)
,

and we know that x/z,y/z and t/z2 satisfy the two equations
{
(x/z)2 + (y/z)2 + 1 = 0

−2(t/z2)2 = (x/z)4 + (y/z)4 + 1.

Replacing x/z,y/z by their expressions in terms of u, v and expanding, the previous
system becomes






u2 + v2 − 5 = 0

(t/z2)2 =
1

125

(
3u4 + 4u3v+ 12u2v2 − 4uv3 + 3v4

)
+ 1.

In particular, the first equation defines a conic section with a Q-rational point, so this
curve admits a hyperelliptic model over Q; Magma’s intrinsic IsHyperelliptic returns the
hyperelliptic model

y2 = −5x8 − 5x7 − 35x6 + 35x5 − 35x3 − 35x2 + 5x− 5. (4.6.2)

Finally, since quadratic twists do not change the Sato-Tate group of a curve (cf. Remark

2.3), and since
√
5 belongs to Q(ζ), we can further take the quadratic twist by 5 of (4.6.2)

without changing either the splitting field of the twist or the group of components of the
corresponding Sato-Tate group. Thus, we arrive at the following model for the Z/4Z-
twist:

y2 = −x8 − x7 − 7x6 + 7x5 − 7x3 − 7x2 + x− 1.
14



5. PROVING SATO-TATE FOR ALL THE TWISTS

The goal of this section is to prove the generalized Sato-Tate conjecture for all twists of
C, which will complete the proof of our main theorem Theorem A, by proving Theorem A(3).
We accomplish this at the end of the section in Theorem 5.14. To prove this, our method
is to observe the equality of the distribution of the ai(A)(p) and the pushforward of the
Haar measure µ by Φi through direct computation. The computation of the distribution
of ai(A)(p) as A ranges over twists of C is done in Proposition 5.11, while the computa-
tion of the pushforward of Haar measure is given in Proposition 5.13.

Before proceeding, we briefly recall the definitions of equidistribution and moment
sequences. Let X be a compact topological space equipped with a Radon measure µ.
Denote by C(X) the normed space of continuous, complex valued functions f on X with
norm given by ‖f‖ := supx∈X |f(x)|. We say that a sequence {xi}i∈N is equidistributed
with respect to µ if for all f ∈ C(X) we have

µ(f) = lim
m→∞

1

m

m∑

i=1

f(xi).

We restrict our attention to the case where X is an interval. In this case, the nth moment,
if it exists, is defined as

Mn({xi}) = lim
m→∞

1

m

∑

i≤m
xni .

Notice, that if the sequence {xi} is equidistributed with respect to the measure µ, we have

that the nth moment exists and is equal to µ(ψn) where ψn(x) = xn. In fact a partial

converse statement holds. If the nth moment of a sequence {xi} exists for every n ≥ 0,
then there exists a unique measure µ such that {xi} is equidistributed with respect to µ
(see Remark 2.5 of [Sut16] for details).

We notate the moments associated to the measure µ by Eµ[x
n]. For later use, we de-

note by n∗µ the pushforward of µ by the multiplication-by-n map; in particular, if µ
is supported on the interval [−a,a], then n∗µ is supported on [−na,na]. Further de-
fine φ to be the Sato-Tate distribution of a non-CM elliptic curve (which is given by

φ(f) = 1
2π

∫2
−2 f(x)

√
4− x2dx for f ∈ C([−2, 2])) and define δ0 to be the point mass at

0, which we will use in the tables in Appendix B.

Remark 5.1. A straightforward direct computation gives

Eφ[x
n] = Γ

(
n+ 1

2

)
Γ

(
n+ 4

2

)−1

(2
√
π)−1 · (2n+ (−2)n),

and by definition we have E3∗φ[x
n] = 3nEφ[x

n].

5.2. Finding the distribution of traces of Frobenius. Before computing the distribution
of ai(A)(p) for all i in subsection 5.7, we first work out the instructive special case when
i = 1 in the main result of this subsection, Proposition 5.6. That is, we are looking for the
distribution of the trace of Frobenius.
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Let Cξ be a twist of C ′ corresponding to a twisting cocycle ξ : GQ → Aut(C ′). Let E/Q

be the elliptic curve y2 = x4 − 14x2 + 1. We know that JacCξ is Q-isogenous to E3. More-
over, for every prime p we know by [MT10, Proposition 11] that the action of the Frobe-
nius at p on JacCξ is given by Fp ◦ ξ(Frobp), where Fp is the automorphism of JacC in-
duced by the Frobenius at p (notice that the Frobenius at p acts on (JacC)Fp

∼= (JacCξ)Fp
.

Considering the matrix representation of the automorphisms of the form ξ(Frobp), we
can understand the trace of Frobenius acting on Cξ in terms of the trace of Frobenius for
E.

Lemma 5.3. Let ℓ 6= p be some prime. For each g ∈ Aut(C ′), there is a function fg : R → R

such that

1√
p

tr
(

Frobp
∣∣ H1ét((JacCξ)Fp

, Qℓ)
)
= fg

(
1√
p

tr
(

Frobp
∣∣ H1ét(EFp

, Qℓ)
))

whenever ξ(Frobp) = g. Moreover, fg depends only on the conjugacy class of g in Aut(C ′); more
precisely, we have

fg(x) =






3x if g = id,
±x if g has order 2 or 4,
0 if g has order 3.

Proof. Notice that the matrix representation of Fp has the form A ⊗ id3, where A is the
2× 2 matrix representation of Frobp acting on H1ét(EFp

, Qℓ). Also notice that ξ(Frobp) ∈
GL6(Z) is of the form id2⊗Π, with Π a signed permutation matrix: indeed, the action
of Frobenius on Jac(Cξ) permutes the three 1-dimensional factors in the decomposition
Jac(Cξ)

Q
∼ E3 and acts on each of them via an automorphism, which (since E does not

have CM) can only be ± id. Since the action of the Frobenius at p on H1ét((JacCξ)Fp
, Qℓ)

is given by Fp ◦ ξ(Frobp), we obtain

1√
p

tr
(

Frobp
∣∣ H1ét((JacCξ)Fp

, Qℓ)
)
=

1√
p

tr ((A⊗ id3)(id2⊗Π))

=
1√
p

tr(A) tr(Π)

=
1√
p

tr
(

Frobp
∣∣ H1ét(EFp

, Qℓ)
)
· trΠ,

which proves the lemma (notice that a permutation matrix of order 2 or 4 has trace ±1,
while a permutation matrix of order 3 has trace 0). For more details related, see also
[MT10, Proposition 12]. �

5.3.1. Further Notation. For simplicity, denote by bp the normalized trace of the Frobenius
at p acting on E and by aξp the normalized trace of Frobp acting on JacCξ. We shall also
write

f(g,p) := fg(bp) = fg

(
1√
p

tr
(

Frobp
∣∣ H1ét(EFp

, Qℓ)
))

.

These quantities make sense for all but finitely many primes; let S be the set of bad
primes at which either E or Cξ has bad reduction.
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We now compute the limiting distribution for the normalized traces of Frobenius aξp for

the twistCξ (hence for all the twists, since we haven’t made any assumptions about ξ). Let
Kξ be the fixed field of the kernel of ξ, that is the minimal extension of Q splitting the twist.
By passing to the quotient, ξ induces an isomorphism Gal(Kξ/Q) ∼= ξ(GQ) ⊆ Aut(C ′).

Lemma 5.4. Keeping the notation above, letH := ξ(GQ), and let D be the set of conjugacy classes
of H. Then, for any k ∈ N,

∑

p≤x,p 6∈S
(aξp)

k =
∑

D∈D

∑

p≤x,p 6∈S
ξ(Frobp)∈D

f(D,p)k.

Proof. We trivially have (for any k ∈ N)
∑

p≤x,p 6∈S
(aξp)

k =
∑

p≤x,p 6∈S
f(ξ(Frobp),p)

k =
∑

h∈H

∑

p≤x,p 6∈S
ξ(Frobp)=h

f(h,p)k.

Now observe that fh depends on h only through its conjugacy class in Aut(C ′), so a
fortiori, it can only depend on h through its conjugacy class in ξ(GQ). Indeed, as ξ(GQ) is
a subgroup of Aut(C ′), conjugacy in ξ(GQ) is a finer invariant than conjugacy in Aut(C ′).
If D is a conjugacy class in H, then, it makes sense to set f(D,p) := f(h,p) where h is any
element of D.

It follows that if we let D be the set of conjugacy classes of H we have
∑

p≤x,p 6∈S
(aξp)

k =
∑

D∈D

∑

h∈D

∑

p≤x,p 6∈S
ξ(Frobp)=h

f(h,p)k

=
∑

D∈D

∑

h∈D

∑

p≤x,p 6∈S
ξ(Frobp)=h

f(D,p)k

=
∑

D∈D

∑

p≤x,p 6∈S
ξ(Frobp)∈D

f(D,p)k.

�

Lemma 5.5. Retain the notation of subsubsection 5.3.1 and Lemma 5.4. Let π(x) denote the
number of primes bounded by x. We have

1

π(x)

∑

p≤x,p 6∈S
(aξp)

k =
∑

D∈D

|D|

|H|

(∫

SU(2)

fD(tr(g))
kdg

)
+ o(1).

Proof. By the refined Sato-Tate conjecture for E, which asserts the equidistribution of
bp when we restrict to primes p having a given Artin symbol in the extension Kξ/Q

(cf. [MM10, Theorem 1]), we know that

∑

p≤x,p 6∈S
ξ(Frobp)∈D

f(D,p)k =

(∫

SU(2)

fD(tr(g))
kdg

)



∑

p≤x,p 6∈S
ξ(Frobp)∈D

1


+ oD




∑

p≤x,p 6∈S
ξ(Frobp)∈D

1


 (5.5.1)
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as x→ ∞. We now apply Chebotarev’s theorem, in the form

1

π(x)




∑

p≤x,p 6∈S
ξ(Frobp)∈D

1


 =

|D|

|H|
+ oD(1) as x→ ∞.

Dividing equation (5.5.1) by π(x), we find

1

π(x)

∑

p≤x,p 6∈S
ξ(Frobp)∈D

f(D,p)k =
|D|

|H|

(∫

SU(2)

fD(tr(g))
kdg

)
+ oD(1).

By summing overD ∈ D and using Lemma 5.4, we deduce

1

π(x)

∑

p≤x,p 6∈S
(aξp)

k =
1

π(x)

∑

D∈D

∑

p≤x,p 6∈S
ξ(Frobp)∈D

f(D,p)k

=
∑

D∈D

|D|

|H|

(∫

SU(2)

fD(tr(g))
kdg

)
+ o(1).

�

Proposition 5.6. With notation as in subsubsection 5.3.1, let Cξ be the twist of C ′ corresponding
to a homomorphism ξ : GQ → Aut(C ′); let H be the image of ξ; let b be the number of elements

in H having order 2 or 4; and letMk :=
∫

SU(2) tr(g)kdg. For every k > 0, we have

lim
x→∞

1

π(x)

∑

p≤x,p 6∈S
(aξp)

k =
3k + b

|H|
Mk, (5.6.1)

while for k = 0 we trivially have limx→∞

1
π(x)

∑
p≤x,p 6∈S(a

ξ
p)
0 = 1.

Proof. Consider the elements of H as permutations in S4. By Lemma 5.3,

fD(x) =






3x if D = {id},
±x if the elements of D have order 2 or 4,
0 if the elements of D have order 3.

Using this and Lemma 5.5, we have

1

π(x)

∑

p≤x,p 6∈S
(aξp)

k =
∑

D∈D

|D|

|H|

(∫

SU(2)

fD(tr(g))
kdg

)
+ o(1)

=
|{h ∈ H : ord(h) = 2 or 4}|

|H|
Mk +

1

|H|
· 3kMk + o(1).

�
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5.7. Distributions of all ai. We now generalize Proposition 5.6 to all coefficients of the
characteristic polynomial of the normalized Frobenius automorphism. This is accom-
plished in the main result of this subsection, Proposition 5.11.

Lemma 5.8. Let Fξp be the automorphism ofH1ét((JacCξ)Fp
, Qℓ) given by the action of the Frobe-

nius at p, and let Hξp(t) be the characteristic polynomial of Fξp and hξp(t) := 1
p3
Hξp(

√
pt). The

polynomial hξp(t), which we call the normalized characteristic polynomial of the Frobenius
at p, can be computed purely in terms of bp and of ξ(Frobp).

Proof. The 6 × 6 matrix diag3(A) representing the automorphism Fp is block-diagonal,
each of the three identical 2× 2 blocks A being given by the action of Frobenius on the
2-dimensional vector space H1ét(EFp

, Qℓ). As in the proof of Lemma 5.3, one sees that the

matrix M representing the action of Fξp is the tensor product of A with a certain 3 × 3
signed permutation matrix Π which only depends on ξ(Frobp). Let α1,α2 be the roots of
the characteristic polynomial of A and π1,π2,π3 be the roots of the characteristic polyno-
mial of Π. The characteristic polynomial Hξp(t) of M = A⊗Π is then given by

Hξp(t) =

3∏

j=1

2∏

i=1

(t− αiπj) =

3∏

j=1

(t2 − (α1 +α2)πjt+ α1α2π
2
j ).

Thus, we have that

hξp(t) =
1

p3

3∏

j=1

(pt2 −
√
p(α1 + α2)πjt+ pπ

2
j )

=

3∏

j=1

(t2 −
α1 + α2√

p
πjt+ π

2
j )

=

3∏

j=1

(t2 − bpπjt+ π
2
j ).

(5.8.1)

Since the πj are determined by Π, which in turn is determined by ξ(Frobp), this proves
the lemma. �

As an immediate consequence of the explicit expression for hξp(t) given by equation
(5.8.1), we also have the following result, which generalizes Lemma 5.3:

Corollary 5.9. There exist polynomials fg,i(x) for i = 0, . . . , 6 and g ∈ Aut(C ′) such that
the following holds: for every cocycle ξ : GQ → Aut(C ′) and every prime p, the normalized

characteristic polynomial of the Frobenius at p acting on H1ét((JacCξ)Fp
, Qℓ) is given by

hξp(t) =

6∑

i=0

fξ(Frobp),i(bp)t
i.

Moreover, the polynomials fg,i(x) only depend on g through its conjugacy class in Aut(C ′) ∼=
S4× Z/2Z ⊂ GL3(Z), and are given explicitly as follows:

• fg,0(x) = fg,6(x) = 1;
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• fg,1(x) = fg,5(x) = − tr(g)x;

• fg,2(x) = fg,4(x) = tr(g2) +
x2

2

(
tr(g)2 − tr(g2)

)
;

• fg,3(x) = −1
3

(
tr(g)3 − tr(g3) − 6det(g)

)
x− x3 det(g).

Here in order to compute the trace and determinant of g we consider it as a 3× 3 signed permuta-
tion matrix.

Remark 5.10. More generally, formula (5.8.1) shows the following: if g ∈ GL3(Z) is a

signed permutation matrix andA is an arbitrary element of SU(2), then fg,i(trA) is the ith

coefficient of the characteristic polynomial of A⊗ g.

Since the functions fg,i are clearly continuous, the same argument that leads to Propo-
sition 5.6 shows

Proposition 5.11. Retaining the notation from Proposition 5.6, let

hξp(t) = a
ξ
6,pt

6 + aξ5,pt
5 + · · ·+ aξ1,pt+ aξ0,p

denote the normalized characteristic polynomial of the Frobenius at p acting on JacCξ. For each
conjugacy class D in H, define fD,i(x) := fh,i(x), where h is any element of D of positive deter-
minant. The functions fD,i(x) are well-defined, and for each i = 0, . . . , 6 and every k ≥ 0 we
have

lim
x→∞

1

π(x)

∑

p≤x,p 6∈S
(aξi,p)

k =
∑

D∈D

|D|

|H|

∫

SU(2)

fD,i(tr(x))
kdx.

5.12. Completing the Proof. For each of the Sato-Tate groups corresponding to twists of
our curve C ′, we find in Proposition 5.13 the pushforward of the Haar measure along
each coefficient of the normalized characteristic polynomial. We conclude our proof of
the main Theorem A in Theorem 5.14.

Proposition 5.13. LetG be a subgroup of STTw(C) such thatG0 = STTw(C)
0; letH be the group

of components of G, seen as a subgroup of S4 ⊂ {x ∈ GL3(Z) : det x = 1}; let Φi : G → R for

i = 0, . . . , 6 be the map sending g ∈ G to the ith coefficient of the characteristic polynomial of g;
let µ be the Haar measure on G. By pushing forward µ along Φi, we obtain probability measures
µi on R, and we have

Eµi [x
k] =

∑

D∈D

|D|

|H|

∫

SU(2)

fD,i(tr(x))
kdx

where k ≥ 0 and the functions fD,i were defined in Corollary 5.9.

Proof. For every connected componentM of ST(Cξ), there is a signed permutation matrix
ΠM ∈ GL3(Z) such that

A ∈ SU(2) 7→ A⊗ΠM ∈M
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is a bianalytic bijection between SU(2) and M. Furthermore, one sees that the character-
istic polynomial of A⊗ΠM is determined by A and by ΠM. Thus one obtains

∫

ST(Cξ)

Φi(x)
n dµST(Cξ)(x) =

∑

M

∫

M

Φi(x)
n dµST(Cξ)(x)

=
∑

M

1

|G|

∫

SU(2)

Φi(A⊗ΠM)n dµSU(2)(A)

=
∑

M

1

|G|

∫

SU(2)

fM,i(tr(A))
n dµSU(2)(A),

where we have set fM,i(x) := fΠM,i(x) and fg,i(x) is defined in the statement of Corollary
5.9 (notice that we can consider ΠM as an element of S4 × Z/2Z ⊂ GL3(Z), see Remark
3.5). �

Theorem 5.14. Let Cξ be any twist of C ′. The generalized Sato-Tate conjecture is true for Cξ.

Proof. Let aξi,p be the ith coefficient of the normalized characteristic polynomial of the

Frobenius at p acting on JacCξ, µ be the Haar measure of ST(Cξ), andΦi : ST(Cξ) → R be

the map giving the ith coefficient of the characteristic polynomial of an endomorphism.

Propositions 5.11 and 5.13 imply that for i = 0, . . . , 6 the moments of the sequence (aξi,p)p
are the same as the moments of the measure Φi∗(µ). This implies that for fixed ξ and i

the sequence (aξi,p)p is equidistributed with respect to Φi∗(µ). �

6. COMPUTING MOMENT SEQUENCES OF TWISTS

Below in Proposition 6.1, we compute the Sato-Tate distribution of the each twist by
summing the contribution corresponding to the cycle types over each component in the
Sato-Tate group of that twist; the complete list of distributions is given in Table 1. We
also obtain explicit formulas for the moment sequences for the coefficients ai(A)(p) for
i = 1, 2, 3 of each twist.

Proposition 6.1. Let Cξ be a twist of C ′ and let G be the component group of ST(Cξ); let b
(resp. c) be the number of elements in G of order 2 (resp. 4), µ be the Haar measure of ST(Cξ).

Let Φi : ST(Cξ) → R be the map giving the ith coefficient of the characteristic polynomial of an
endomorphism; let µi be the pushforward of µ along Φi. For n > 0, the moment sequences of
µ1,µ2, and µ3 are given by:

Eµ1[x
n] =

(3n+ b+ c)

|G|
· Eφ[x

n],

Eµ2[x
n] =

1

|G|
Eφ[(3+ 3x

2)n] +
b

|G|
Eφ[(3− x

2)n] +
c

|G|
Eφ[(−1+ x

2)n],

Eµ3[x
n] =

1

|G|
Eφ[(6x+ x

3)n] +
b+ c

|G|
Eφ[(x

3 − 2x)n] +
|G|− b− c− 1

|G|
Eφ[(3x− x

3)n]

for n = 0 we trivially have Eµi[x
0] = 1 for i = 1, 2, 3.
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Proof. Our purpose is to compute, for every n ≥ 0, the integrals

∫

ST(Cξ)

Φ1(x)
n dµST(Cξ)(x),

∫

ST(Cξ)

Φ2(x)
n dµST(Cξ)(x),

∫

ST(Cξ)

Φ3(x)
n dµST(Cξ)(x),

which as above we write as
∑
M

∫
MΦi(x)

n dx. Notice first that the functionsΦi : ST(Cξ) →
R are invariant under conjugation in GL6(R), so that in particular they are also invariant
under conjugation in STTw(C) since ST(Cξ) ⊆ STTw(C) ⊂ GL6(R).

Secondly, observe that the Haar measure of ST(Cξ) is invariant under conjugation as
well, which implies that different connected components of ST(Cξ) that are conjugated in
STTw(C) give the same contribution to the integral

∫
ST(Cξ)Φi(x)

n dµST(Cξ)(x). Since the

connected components of ST(Cξ) are a subset of the connected components of STTw(C), it
suffices to compute

∫

M

Φi(x)
n dµSTTw(C)(x)

for every connected componentM of STTw(C). IfM is a connected component of ST(Cξ),
then

∫

M

Φi(x)
n dµST(Cξ)(x) =

| STTw(C)/ STTw(C)0|

|G|

∫

M

Φi(x)
n dµSTTw(C)(x)

because the total mass of M for the Haar measure of ST(Cξ) (resp. STTw(C)) is 1/|G|
(resp. 1/| STTw(C)/ STTw(C)

0|), so we will need to account for this rescaling in what fol-
lows.

Now notice that if σ1,σ2 ∈ S4 are permutations that index two connected components
M1,M2 of STTw(C), then M1,M2 are conjugate in STTw(C) if and only if σ1,σ2 are conju-
gate in S4, which occurs if and only if σ1, σ2 have the same cycle type. Thus, it suffices to
understand the contribution of the five families of connected components, corresponding
to the five cycle-types in S4.

(1) Identity permutation,M = ST(Cξ)0: In this case, we haveΠM = id3, the 3× 3 iden-

tity matrix. In order to employ the formulas from Corollary 5.9, we first compute
that det(ΠM) = 1 and tr(ΠM) = tr(Π2M) = tr(Π3M) = 3. We obtain fΠM,1(x) = 3x,

fΠM,2(x) = 3+ 3x
2, and fΠM,3(x) = −x3 − 6x, that is, the equalities

Φ1(A⊗ΠM) = fΠM,1(tr(A)) = −3 tr(A),

Φ2(A⊗ΠM) = fΠM,2(tr(A)) = 3+ 3 tr(A)2,

Φ3(A⊗ΠM) = fΠM,3(tr(A)) = − tr(A)3 − 6 tr(A),

hold for all A ∈ SU(2). Now observe that STTw(C) has 24 connected components
and that STTw(C)

0 is isomorphic to SU(2), and hence the restriction of µSTTw(C) to
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STTw(C)0 is 1
24 -th of the standard Haar measure on SU(2). It follows that

|G|

∫

ST(Cξ)0
Φ1(x)

n dµST(Cξ)(x) = 24

∫

STTw(C)0
Φ1(A⊗ id)n dµSTTw(C)(A)

=

∫

SU(2)

Φ1(A⊗ id)n dµSU(2)(A)

=

∫

SU(2)

(−3 tr(A))n dµSU(2)(A)

= Eφ [(−3x)
n] = Eφ [(3x)

n] ,

|G|

∫

ST(Cξ)0
Φ2(x)

n dµST(Cξ)(x) =

∫

SU(2)

Φ2(A⊗ id)n dµSU(2)(A)

=

∫

SU(2)

(3+ 3 tr(A)2)n dµSU(2)(A)

= Eφ

[
3n(1+ x2)n

]
,

and likewise

|G|

∫

ST(Cξ)0
Φ3(x)

n dx =

∫

SU(2)

Φ3(A⊗ id)n dµSU(2)(A)

=

∫

SU(2)

(− tr(A)3 − 6 tr(A))n dµSU(2)(A)

= Eφ

[
(−1)n(x3 + 6x)n

]
.

(2) Order-three permutation, M =
(

id
id

id

)
ST(Cξ)0: In this case we can take ΠM =

(
1

1
1

)
. We have tr(ΠM) = tr(Π2M) = 0, tr(Π3M) = 3 and det(ΠM) = 1, whence

fΠM,1(x) = 0, fΠM,2(x) = 0 and fΠM,3(x) = 3x− x3. Proceeding as in the previous
case, we obtain

∫

M

Φ1(x)
n dµST(Cξ)(x) = 0,

∫

M

Φ2(x)
n dµST(Cξ)(x) = 0,

∫

M

Φ3(x)
ndµST(Cξ)(x) =

1

|G|
Eφ[(3x− x

3)n].

(3) Transposition,M =
(

id
id

id

)
ST(Cξ)0: We haveΠM =

(
1

1
1

)
, tr(ΠM) = tr(Π3M) =

1, tr(Π2M) = 3, and det(ΠM) = −1. It follows that fΠM,1(x) = −x, fΠM,2(x) = 3− x
2
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and fΠM,3(x) = x
3 − 2x, whence
∫

M

Φ1(x)
n dµST(Cξ)(x) =

1

|G|
Eφ[x

n],

∫

M

Φ2(x)
n dµST(Cξ)(x) =

1

|G|
Eφ[(3− x

2)n],

∫

M

Φ3(x)
ndµST(Cξ)(x) =

1

|G|
Eφ[(x

3 − 2x)n].

(4) Double transposition, M =

(
id

id
− id

)
ST(Cξ)0: We have ΠM =

(
1
1
−1

)
, and

since
(

1
1

1

)
and ΠM are similar in GL3(R), we have the same values for each of

the integrals as in (3).

(5) Four-cycle, M =

(
− id

id
id

)
ST(Cξ)0: By setting ΠM =

(
−1

1
1

)
, we can compute

that tr(ΠM) = tr(Π3M) = 1, tr(Π2M) = −1, det(ΠM) = 1, and whence fΠM,1(x) = −x,

fΠM,2(x) = x
2 − 1 and fΠM,3(x) = 2x− x

3. Notice that
∫

SU(2)

(2 tr(A) − tr(A)3)n dµSU(2)(A) =

∫

SU(2)

(−2 tr(A) + tr(A)3)n dµSU(2)(A)

since both integrals vanish if n is odd, and they are clearly equal if n is even. Thus
we obtain

∫

M

Φ1(x)
n dµST(Cξ)(x) =

1

|G|
Eφ[x

n],

∫

M

Φ2(x)
n dµST(Cξ)(x) =

1

|G|
Eφ[(x

2 − 1)n],

∫

M

Φ3(x)
ndµST(Cξ)(x) =

1

|G|
Eφ[(x

3 − 2x)n].

Finally, we need to sum over the connected components of each type: clearly there is
precisely one component of type (1), and there are |G| − b − c − 1 components of type
(2), b components of types (3) and (4), and c components of type (5). From the above
computations, our result follows. �

Remark 6.2. Notice that since − id belongs to ST(Cξ)0, for every connected component M
of ST(Cξ) there are two possible choices of ΠM, namely the ones we have used and their
opposites. However, different choices lead (as they should) to the same result: this is clear
for the case of Φ2, which, being quadratic functions of the eigenvalues, take on the same
value on a matrix x and on its opposite −x. It is also true for Φ1 and Φ3, because all the
odd-indexed moments vanish, while all the expressions of the form Φ2k1 ,Φ2k3 are again
even functions of their argument, hence insensitive to our arbitrary choice of sign.

Remark 6.3. In Tables 2, 3, and 4, we present theoretical and numerical computations of
the first few terms of the moment sequences of µ1, µ2, and µ3. The algorithm used to
compute the numerical data comes from [HS16].
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Notice that the curves corresponding to subgroups 4, 5, and 6 in Table 1 all have the
same µ1 moments, but not the same Sato-Tate distribution. Indeed, the µ2 moments pro-
vide a distinction between the curve corresponding to subgroup 4 and the curves cor-
responding to subgroups 5, and 6, where the latter two curves have the same Sato-Tate
distribution by Lemma 4.5.
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APPENDIX A. DETERMINATION OF SATO-TATE GROUP FROM THE FIRST MOMENT

SEQUENCE

In general, the sequence of Frobenius traces does not determine the Sato-Tate group.
However, in the case where the Sato-Tate distribution is 3∗φ, as defined at the beginning
of Section 5, we show that this distribution can only arise from the Sato-Tate group SU(2)3.
In fact we prove something stronger: the only Sato-Tate group (of a 3-dimensional abelian
variety) whose associated trace distribution has the same first five moments as 3∗φ is
conjugate to SU(2)3.

Proposition A.1. LetA/K be a 3-dimensional abelian variety over some number field K. Suppose
that the first five moments of the trace distribution µ1 associated with ST(A) coincide with the
first five moments of 3∗φ, that is, we have Eµ1 [x

n] = E3∗φ[x
n] for n = 0, . . . , 4. Then A is

K-isogenous to the cube of an elliptic curve without CM, and ST(A) is conjugate to SU(2)3 inside
GSp(6).

The proof of this result occupies the remainder of the section. Notate G := ST(A).
Here, G is a (reductive) compact real Lie group, acting naturally on R6 ⊆ C6. LetW be C6

interpreted as a representation of G, and write W =
⊕k
i=1W

⊕ni
i for the decomposition of

W into irreducible G-modules. Let χ =
∑k
i=1niχi be the character of this representation

W. Observe that χ is real, and hence the assumption on the moments sequence implies

〈χ,χ〉 =
∫

G

tr(g)2dg = Eµ1 [x
2] = 9⇒

k∑

i=1

n2i = 9,

using E3∗φ[x
2] = 9 (see Remark 5.1). On the other hand, we have that

∑
ni dimWi = 6,

which leaves precisely two possibilities:

(1) either k = 1, n1 = 3 and dimW1 = 2,
(2) or k = 3, n1 = n2 = 2, n3 = 1, dimW1 = dimW2 = 1 and dimW3 = 2.

Let g be the Lie algebra of GC, and write g =
⊕m
j=1 gj ⊕ c with every gi simple and c

abelian. Each representation Wi can be written as Wi1 ⊠ · · · ⊠Wim ⊠ ψi, where Wij is
an irreducible representation of gj and ψi is a character of c. Notice that W is a faithful
representation of G, so for each j = 1, . . . ,m there exists an i such thatWi is a faithful rep-
resentation of gj. In particular,Wij is a faithful representation of gj, and since dimWij ≤ 2
we obtain that gj has a faithful representation of dimension at most 2. This is only possible
if gj is sl2 for all j, because no other simple Lie algebra admits an irreducible 2-dimensional
faithful representation.

In both cases (1) and (2), up to isomorphism (of G-modules) there is only one irre-
ducible submodule Wi of dimension 2, which implies that m (the number of copies of sl2
appearing in g) is at most 1. Also observe that m cannot be zero, because an abelian Lie
algebra does not admit any irreducible 2-dimensional faithful representation over C. We
can therefore write g = sl2 ⊕ c and Wi = Wi1 ⊠ψi, where Wi1 is either trivial or isomor-
phic to the standard representation of sl2 andψi is a character of c. To complete the proof,
we will now verify Proposition A.1 holds in both cases (1) and (2).

(1) Suppose that we are in case (1) above. We claim that c is trivial. To show this, we re-
strict our attention to a maximal compact Lie subalgebra of g, which is necessarily
of the form su2 ⊕ cR. By faithfulness, there exists i such that ψi is nontrivial; as W
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comes from a real representation and Wi1 ⊠ψi ⊆ W we also have Wi1⊠ψi ⊆ W.
We have Wi1 = Wi1 both for the trivial and the standard representation of su2, so
Wi1 ⊠ψi ⊆ W. On the other hand we have ψi 6= ψi: indeed, ψi is obtained (by
differentiation and extension of scalars) from a real representation ρi of the maxi-
mal central torus T of ST(A). As ST(A) is compact, T is a product of copies of S1,

hence its representation ρi satisfies ρi = ρ−1i , because all the eigenvalues of ρi(x)
lie on the unit circle, for all x ∈ T. Extending scalars and differentiating we find

ψi = −ψi, so in particular ψi 6= ψi since ψi is nontrivial. This immediately leads
to a contradiction, because on the one hand we have Wi1⊠ψi 6∼= Wi1⊠ψi and on
the other all irreducible submodules of W are isomorphic. Hence c = (0). Since
c = (0), we obtain that G0 is abstractly isomorphic to SU(2), which in turn implies
that the Hodge group of A is (abstractly isomorphic to) SL(2).

To complete this case, we will show that in fact ST(A) is not only isomorphic to
SU(2), but in fact is conjugate to SU(2)3 inside GSp(6). Write Ak (up to isogeny) as

a product of simple abelian varieties, AK ∼
∏s
i=1A

ti
i . If s = 1, this leads immedi-

ately to a contradiction, because no absolutely simple abelian threefold has Hodge
group isomorphic to SL(2). If instead A is nonsimple, all its absolutely simple
factors are of dimension at most 2. By [Lom14, Corollary 1.2], we have

SL(2) ∼= Hg(A) ∼=

s∏

i=1

Hg(Ai),

where each factor on the right is nontrivial (because no abelian variety has trivial
Hodge group). This clearly implies s = 1, Hg(A1) = SL(2), and t1 dimA1 = 3: it
is immediate to check that this is only possible if A1 is an elliptic curve without
CM and t1 = 3. In turn, this means that A is geometrically isogenous to the cube
of a non-CM elliptic curve, so that ST(A)0 = SU(2)3 (up to conjugacy in GSp(6)).
Finally, Table 2 shows that for a Sato-Tate group with this identity component we
can have Eµ1[x

2] = 9 only when ST(A) is connected. That is, if and only if ST(A) =

ST(A)0 = SU(2)3 as claimed. Notice that the argument for this case only involves
the first three moments of µ1, and also shows that the equality ST(A) = SU(2)3 is
equivalent to A being K-isogenous to the cube of an elliptic curve without CM.

(2) In case (2), the same argument as above leads to the conclusion that W3 = W3, so

that W1 = W2 is given by a character ψ of c, while c acts trivially on W3 (which
otherwise would not be self-conjugate). If c is trivial, the same argument as in the
previous case leads to the conclusion thatA isK-isogenous to the cube of an elliptic
curve. This is absurd under the hypotheses of case (2), because W would then be
isomorphic to the direct sum of three identical copies of the same representation,
which is incompatible with W1 6∼= W3. To conclude the proof, we will assume c is
nontrivial and derive a contradiction with the assumption Eµ1[x

4] = 162. Notice

that there exist abelian threefolds for which we have W1 = W2, W3 = W3, and
c nontrivial: an example is given by A = E21 × E2, where E1 is an elliptic curve
admitting CM over K and E2 is an elliptic curve without potential CM. As we
now show, however, the Sato-Tate group of any such threefold does not satisfy
Eµ1 [x

4] = 162.
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We write the character χ of W as 2ψ+ 2ψ + η, where ψ is a group morphism
G→ C× and η is the character of an irreducible, 2-dimensional, real representation
of G.

Lemma A.2. The integrals
∫
Gψ

nηkdg and
∫
Gψ

n
ηkdg vanish for all n > 0 and k ≥ 0.

Proof. Notice that the statements for ψ and ψ are clearly equivalent, so we only
consider the former case. For the sake of simplicity, we identify representations
with their characters; in particular, ifω is the character of a representation V , then
ωk is identified with V⊗k.

Recall that η is real, so the number
∫
Gψ

nηkdg = 〈ψn, ηk〉 is the multiplicity

of the 1-dimensional representation ψn as a constituent of the representation ηk.
We want to prove that this number is zero, so it suffices to show that ψn is not
isomorphic to a G0-submodule of ηk (a fortiori, this implies that there is no G-
equivariant, nonzero map from ψn to ηk). It also suffices to show that ψn is not a
subrepresentation of ηk for the action of the (real) Lie algebra gR of G0. We have
already shown that gR = su2 ⊕ cR, and that η = Std⊠1, where Std is the standard
2-dimensional representation of su2 and 1 denotes the trivial representation of c.
It follows easily that for k ≥ 0 the only possible 1-dimensional constituents of
ηk = (Std)⊗k⊠ 1 are copies of the trivial representation of gR, which, in particular,
are not isomorphic to the non-trivial 1-dimensional representation ψn. It follows
that 〈ψn, ηk〉 vanishes, as we wanted to show. �

We now compute
∫
G χ

4dg in two different ways. On the one hand, this is the
fourth moment of the Sato-Tate distribution of traces associated with G, so it is
equal to E3∗φ[x

4] = 162 (see Remark 5.1) by assumption. On the other hand, using

Lemma A.2 and the equality ψψ = 1, we find
∫

G

χ4dg =

∫

G

(
48η2ψψ+ 96ψ2ψ

2
+ η4

)
dg

=

∫

G

(
48η2 + 96+ η4

)
dg

= 96+ 48〈η, η〉+
∫

G

η4dg

= 144+

∫

G

η4dg.

Observe now that η is a 2-dimensional representation, so |η(g)| ≤ 2 for all g ∈ G.
It follows that |

∫
G η

4dg| ≤
∫
G 2

4dg = 16, whence 162 =
∫
G χ

4dg ≤ 144+ 16 = 160.
This is a contradiction, completing the proof of Proposition A.1.

APPENDIX B. TABLES
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Group Generators Equation of twist
Minimal field

trivializing the twist
Normalized

trace distributions

1 Trivial {id}

{
x2 + y2 + z2 = 0

−2t2 = x4 + y4 + z4
Q 3∗φ

2 Z/2Z (1, 2) y2 = x8 − 56x4 + 16 Q(i) 1
2(φ) +

1
2(3∗φ)

3 Z/2Z (1, 4)(2, 3) y2 = −x8 − 14x4 − 1 Q(i) 1
2(φ) +

1
2(3∗φ)

4 Z/4Z (1, 2, 3, 4) y2=−x8−x7−7x6+7x5−7x3−7x2+x−1 Q(ζ5)
3
4(φ) +

1
4(3∗φ)

5 (Z/2Z)2 (1, 2)(3, 4),(1, 3)(2, 4) y2 = −x8 − 56x4 − 16 Q(ζ8)
3
4(φ) +

1
4(3∗φ)

6 (Z/2Z)2 (1, 2),(3, 4) y2 = x8 − 14x4 + 1 Q(ζ8)
3
4(φ) +

1
4(3∗φ)

7 D4 (1, 2, 3, 4),(1, 3)
y2=x8+2x7−14x6+14x5−

14x4+14x3−14x2+2x+1
Q(i, 4

√
3) 7

8(φ) +
1
8(3∗φ)

8 Z/3Z (1, 2, 3)






x2+y2+1=0

6t2=−23(x4+y4+1)+16x−12x2−20x3

+20y−12xy−12x2y−16x3y−12y2

+12xy2−12x2y2−16y3+20xy3

Q(ζ9)
+ 1

3(3∗φ) +
2
3(δ0)

9 S3 (1, 2, 3), (1, 2) y2 = −6x7 + 21x4 + 12x Q(ζ3,
3
√
2) 1

6
(3φ)+3

6
(φ)+2

6
(δ0)

10 A4 (1, 2, 3), (1, 2)(3, 4)
y2=−x8+4x7−28x6+28x5+14x4

+28x3−196x2+100x−61

Splitting field of

x4 + 2x3 + 6x2 + 6x+ 3
1
12

(3φ)+ 3
12

(φ)+ 8
12

(δ0)

11 S4 (1, 2, 3, 4),(1, 2)
y2=x8−14x7+84x6−294x5+651x4

−882x3+630x2−126x−54

Splitting field of

x4 − 6x2 + 2x+ 6
1
24

(3∗φ)+15
24

(φ)+ 8
24

(δ0)

TABLE 1. Explicit twists realizing all possible Sato-Tate groups
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Subgroup M2 M4 M6 M8 M10

1 (theoretical) 9 162 3645 91854 2480058

1 (numerical) 8.999 161.988 3644.890 91854.573 2480122.102

2 (theoretical) 5 82 1825 45934 1240050

2 (numerical) 4.999 81.973 1824.235 45910.323 1239239.907

3 (theoretical) 5 82 1825 45934 1240050

3 (numerical) 4.999 81.973 1824.235 45910.326 1239239.988

4 (theoretical) 3 42 916 22974 620046

4 (numerical) 2.999 41.972 914.184 22949.933 619320.101

5 (theoretical) 3 42 916 22974 620046

5 (numerical) 2.999 41.973 914.37 22958.227 619599.349

6 (theoretical) 3 42 916 22974 620046

6 (numerical) 2.999 41.973 914.373 22958.228 619599.369

7 (theoretical) 2 22 460 11494 310044

7 (numerical) 1.999 21.978 459.311 11471.005 309269.022

8 (theoretical) 3 54 1215 30618 826686

8 (numerical) 2.999 53.972 1214.282 30600.607 826296.848

9 (theoretical) 2 28 610 153316 413364

9 (numerical) 1.999 27.987 609.764 15311.966 413302.154

10 (theoretical) 1 14 305 7658 206682

10 (numerical) 1.000 13.991 304.674 7647.112 206330.548

11 (theoretical) 1 8 155 3836 103362

11 (numerical) 1.000 7.983 154.585 3825.122 103074.236

TABLE 2. Table of µ1 moment sequences
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Subgroup M1 M2 M3 M4 M5

1 (theoretical) 6 45 405 4131 45684

1 (numerical) 6.000 44.997 404.978 4130.861 45683.553

2 (theoretical) 4 25 209 2083 22890

2 (numerical) 4.000 24.995 208.936 2082.168 22878.772

3 (theoretical) 4 25 209 2083 22890

3 (numerical) 4.000 24.995 208.936 2082.168 22878.773

4 (theoretical) 2 13 105 1043 11448

4 (numerical) 2.000 12.995 104.944 1042.139 11436.874

5 (theoretical) 3 15 111 1059 11493

5 (numerical) 3.000 14.995 110.941 1058.329 11485.207

6 (theoretical) 3 15 111 1059 11493

6 (numerical) 3.000 14.995 110.941 1058.329 11485.208

7 (theoretical) 2 9 59 539 5772

7 (numerical) 2.000 8.996 58.945 538.250 5761.490

8 (theoretical) 2 15 135 1377 15228

8 (numerical) 2.000 14.995 134.937 1376.264 15219.817

9 (theoretical) 2 10 74 706 7662

9 (numerical) 2.000 9.998 73.974 705.749 7659.752

10 (theoretical) 1 5 37 353 3831

10 (numerical) 1.000 4.999 36.977 352.657 3826.140

11 (theoretical) 1 4 22 186 1941

11 (numerical) 1.000 3.997 21.961 185.552 1935.804

TABLE 3. Table of µ2 moment sequences

31



Subgroup M2 M4 M6 M8

1 (theoretical) 65 11076 2561186 685324780

1 (numerical) 64.995 11075.733 2561214.275 685313387.267

2 (theoretical) 33 5540 1280610 342662572

2 (numerical) 32.991 5537.488 1279721.846 342293549.829

3 (theoretical) 33 5540 1280610 342662572

3 (numerical) 32.991 5537.488 1279721.927 342293572.882

4 (theoretical) 17 2772 640322 171331468

4 (numerical) 16.991 2769.460 639567.852 1171083665.383

5 (theoretical) 17 2772 640322 171331468

5 (numerical) 16.991 2770.097 639840.117 171172626.176

6 (theoretical) 17 2772 640322 171331468

6 (numerical) 16.991 2770.097 639840.145 171172628.271

7 (theoretical) 9 1388 320178 85665916

7 (numerical) 8.993 1385.715 319374.334 8537815.326

8 (theoretical) 23 3696 853742 228441640

8 (numerical) 22.991 3693.961 853369.706 228400307.404

9 (theoretical) 12 1850 426888 114221002

9 (numerical) 11.996 1849.356 42681.689 114211031.306

10 (theoretical) 7 928 213454 57110536

10 (numerical) 6.997 926.945 213098.809 56995860.860

11 (theoretical) 4 466 106744 28555450

11 (numerical) 3.994 464.747 106461.595 28497167.689

TABLE 4. Table of µ3 moment sequences
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