KU LEUVEN

Fields of definition of elliptic fibrations on covers of certain extremal rational elliptic surfaces

V. Cantoral Farfán KU Leuven May 2020

0 Joint work with

Cecilia Salgado

Antonela Trbović

Rosa Winter

Alice Garbagnati

0 Outline

- 1 General introduction & motivations
- 2 Preliminaries, setting & goals
- 3 Results & examples

1 Outline

- General introduction & motivationsK3 surfacesElliptic fibrations
- Preliminaries, setting & goals
- Results & examples

1 K3 surfaces

Erich Kähler

Kunihiko Kodaira

Ernst Kummer

1 K3 surfaces

Erich Kähler

Kunihiko Kodaira

Ernst Kummer

Definition

An algebraic K3 surface X is a smooth, projective, 2-dimensional variety defined over a field k such that :

- \blacktriangleright $\omega_X \simeq \mathcal{O}_X$,
- ► $H^1(X, \mathcal{O}_X) = 0.$

1 K3 surfaces

Examples

- 1 A smooth quartic surface in \mathbb{P}^3_k .
- 2 A Kummer surface.

1 Elliptic fibrations

Definition

An elliptic fibration of a surface S is a surjective morphism

$$\mathcal{E}:S \to C$$

where C is a smooth curve defined over the field k, such that:

- 1 almost all the fibers are smooth genus 1 curves,
- 2 at least one singular fiber,
- 3 at least one section (the zero section).

1 Elliptic fibrations

1 Elliptic fibrations

- Denote by E the general fiber of \mathcal{E} ; which is an elliptic curve defined over the function field k(C).
- 2 Denote by $MW(\mathcal{E})$ the Mordell–Weil group of \mathcal{E} :

$$MW(\mathcal{E}) = E(k(C)) = \{\text{sections of } \mathcal{E} : S \to C\}.$$

2 Outline

- General introduction & motivations
- Preliminaries, setting & goals Setting Goals
- Results & examples

2 Rational elliptic surfaces

Definition

A rational elliptic surface R is a smooth rational surface endowed with an elliptic fibration $\mathcal{E}_R:R\to\mathbb{P}^1.$

Example

A pencil of cubics in $\mathbb{P}^2_{\mathbb{Q}}$

2 Extremal rational elliptic surfaces

Definition

An extremal rational elliptic surface R is such that

- rank $(MW(\mathcal{E}_R)) = 0$,
- R has a maximal Picard number.

2 Extremal rational elliptic surfaces

Definition

An extremal rational elliptic surface R is such that

- ightharpoonup rank $(MW(\mathcal{E}_R)) = 0$,
- R has a maximal Picard number.

Rick Miranda

Ulf Persson

Extremal rational elliptic surfaces

Definition

An extremal rational elliptic surface R is such that

- rank $(MW(\mathcal{E}_R)) = 0$,
- R has a maximal Picard number.

Theorem (Miranda & Persson 1996)

There exist only 16 fiber configurations of extremal rational elliptic surfaces.

 \triangleright k a number field;

- k a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k)$ the absolute Galois group;

- k a number field;
- $ightharpoonup G_{ar k} = \operatorname{Gal}(ar k/k)$ the absolute Galois group;
- ightharpoonup R a extremal rational elliptic surface def. / k;

- k a number field:
- $ightharpoonup G_{ar k} = \operatorname{Gal}(ar k/k)$ the absolute Galois group;
- ightharpoonup R a extremal rational elliptic surface def. / k;
- \triangleright \mathcal{E}_R the elliptic fibration def. / k & \mathcal{O}_R the zero section def. / k;

- k a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k)$ the absolute Galois group;
- R a extremal rational elliptic surface def. / k;
- \triangleright \mathcal{E}_R the elliptic fibration def. / k & \mathcal{O}_R the zero section def. / k;
- ▶ d is a double cover def. / k branched on P_1 and P_2 ;

- k a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k)$ the absolute Galois group;
- R a extremal rational elliptic surface def. / k;
- \triangleright \mathcal{E}_R the elliptic fibration def. / k & \mathcal{O}_R the zero section def. / k;
- ▶ d is a double cover def. / k branched on P_1 and P_2 ;
- ▶ the two branched fibers $\mathcal{E}_R^{-1}(P_1)$ and $\mathcal{E}_R^{-1}(P_2)$ are smooth and reduced fibers, $G_{\bar{k}}$ -conjugate.

- k a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k)$ the absolute Galois group;
- R a extremal rational elliptic surface def. / k;
- \mathcal{E}_R the elliptic fibration def. / k & \mathcal{O}_R the zero section def. / k;
- ▶ d is a double cover def. / k branched on P_1 and P_2 ;
- ▶ the two branched fibers $\mathcal{E}_R^{-1}(P_1)$ and $\mathcal{E}_R^{-1}(P_2)$ are smooth and reduced fibers, $G_{\bar{k}}$ -conjugate.

 $lacksquare X \simeq R imes_d \mathbb{P}^1$ is a K3 surface def. /k;

- k a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k)$ the absolute Galois group;
- R a extremal rational elliptic surface def. / k;
- \triangleright \mathcal{E}_R the elliptic fibration def. / k & \mathcal{O}_R the zero section def. / k;
- ▶ d is a double cover def. / k branched on P_1 and P_2 ;
- ▶ the two branched fibers $\mathcal{E}_R^{-1}(P_1)$ and $\mathcal{E}_R^{-1}(P_2)$ are smooth and reduced fibers, $G_{\bar{k}}$ -conjugate.

- $X \simeq R \times_d \mathbb{P}^1$ is a K3 surface def. /k;
- ▶ the double cover d induces the elliptic fibration \mathcal{E}_X & the zero section \mathcal{O}_X both def. /k.

Remarks and notations

- $ightharpoonup R imes_d \mathbb{P}^1$ is endowed with an involution which is the cover involution of $R \times_d \mathbb{P}^1 \to R$ induced by d.
- lacktriangle This involution can be extended to an involution of $X\simeq R imes_d\mathbb{P}^1$ denoted $\tau \in \operatorname{Aut}(X)$.
- **b** By construction, τ is a non-symplectic involution on X (i.e. does not preserves the symplectic form defined on X).
- ▶ Denote by k_{τ}/k the quadratic extension of k such that $\operatorname{\mathsf{Gal}}(k_{\tau}/k) = <\tau>.$

R extremal rational elliptic surface $/\ k$

R extremal rational elliptic surface / k

 $X \simeq R \times_d \mathbb{P}^1 \text{ K3}$ surf. / k obtained as a double cover of R

R extremal rational elliptic surface / k

 $X \simeq R \times_d \mathbb{P}^1 \text{ K3}$ surf. / k obtained as a double cover of R

R extremal rational elliptic surface / k

 $X \simeq R \times_d \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

Determine the fields of definition of the distinct elliptic fibrations on X

1 Classify all the possible elliptic fibrations on X.

R extremal rational elliptic surface / k

 $X \simeq R \times_d \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

- 1 Classify all the possible elliptic fibrations on X.
- 2 For each elliptic fibration on X

R extremal rational elliptic surface $/\ k$

 $X \simeq R \times_d \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

- 1 Classify all the possible elliptic fibrations on X.
- 2 For each elliptic fibration on X
 - 1 determine its field of definition i.e. the field over which the class of a fiber & a section are defined;

R extremal rational elliptic surface / k

 $X \simeq R \times_d \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

- 1 Classify all the possible elliptic fibrations on X.
- 2 For each elliptic fibration on X
 - 1 determine its field of definition i.e. the field over which the class of a fiber & a section are defined;
 - 2 give an upper bound for the degree of the field over which the Mordell-Weil group of the fibration admits a set of generators.

Upshot

Upshot

We prove that a genus 1 fibration on X admits a section over a field which depends on the action of the cover involution τ on the fibers of the genus 1 fibration.

Steps

In order to prove that a genus 1 fibration on X admits a section over a field which depends on the **action** of the cover involution τ on the fibers of the genus 1 fibration.

Classify all the possible elliptic fibrations on X.

2 Steps

In order to prove that a genus 1 fibration on X admits a section over a field which depends on the **action** of the cover involution τ on the fibers of the genus 1 fibration.

- 1 Classify all the possible elliptic fibrations on X.
 - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018.

2 Steps

In order to prove that a genus 1 fibration on X admits a section over a field which depends on the **action** of the cover involution τ on the fibers of the genus 1 fibration.

- 1 Classify all the possible elliptic fibrations on X.
 - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018.
- 2 For each elliptic fibration on X

2 Steps

In order to prove that a genus 1 fibration on X admits a section over a field which depends on the **action** of the cover involution τ on the fibers of the genus 1 fibration.

- 1 Classify all the possible elliptic fibrations on X.
 - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018.
- 2 For each elliptic fibration on X
 - 1 determine the **type** of the fibration w.r.t. the cover involution τ and **hence** the field of definition of the fibration;

2 Steps

In order to prove that a genus 1 fibration on X admits a section over a field which depends on the **action** of the cover involution τ on the fibers of the genus 1 fibration.

- 1 Classify all the possible elliptic fibrations on X.
 - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018.
- 2 For each elliptic fibration on X
 - 1 determine the **type** of the fibration w.r.t. the cover involution τ and **hence** the field of definition of the fibration;
 - 2 first determine the Mordell-Weil group of the fibration and then give an upper bound for the degree of the field over which the Mordell-Weil group admits a set of generators.

2 Some extra definition

Definition

Let η be an elliptic fibration on X then it is

- of type 1 with respect to τ , if τ preserves all the fibers of η ;
- of type 2 with respect to τ , if τ does not preserve all the fibers of η , but maps a fiber of η to another one. In this case τ is induced by an involution of the basis of $\eta: X \to \mathbb{P}^1$. It fixes exactly two fibers and $\tau^{*,1}$ preserves the class of a fiber of η ;
- ▶ of type 3, if τ maps fibers of η to fibers of another elliptic fibration. In this case τ^* does not preserve the class of the generic fiber of η .

 $^{^1}$ We denote by au^* the involution induced by au on $\mathsf{NS}(X)$

3 Outline

- General introduction & motivations
- Preliminaries, setting & goals
- Results & examples Results Examples

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

- ▶ R_9 an extremal rational elliptic surface def. / k with reducible fiber of type I_9 ;
- ▶ X_9 a K3 surface, defined over k, obtained by a double cover of R_9 branched in two smooth $G_{\bar{k}}$ -conjugate fibers;
- $igspace \mathcal{E}_{R_9}$ the elliptic fibration def. / k & \mathcal{O}_{R_9} the zero section def. / k.

- $ightharpoonup R_9$ an extremal rational elliptic surface def. / k with reducible fiber of type I_9 ;
- $ightharpoonup X_9$ a K3 surface, defined over k, obtained by a double cover of R_9 branched in two smooth $G_{\bar k}$ -conjugate fibers;
- \blacktriangleright \mathcal{E}_{R_9} the elliptic fibration def. / k & \mathcal{O}_{R_9} the zero section def. / k.
- ▶ The singular fibers of R_9 are $I_9 + 3I_1$.
- ▶ The Mordell-Weil group is $\mathbb{Z}/3\mathbb{Z} = \{\mathcal{O}_{R_9}, t_1, t_2\}.$

Fields of definition of elliptic fibrations

1 Shioda-Tate formula asserts that:

$$\operatorname{NS}(R) \simeq \langle \mathcal{O}, F \rangle \oplus \operatorname{MW}(\mathcal{E}_R) \oplus \sum_{v \in \text{reducible fibers} \atop i \in S_v} \Theta_{v,i}$$

where $\mathrm{MW}(\mathcal{E}_R)$ is a finite group, and $\Theta_{v,i}$ are the components of the reducible fiber $\mathcal{E}_R^{-1}(v)$ with n_v its number of components and $S_v = \{0, \cdots, n_v - 1\}$.

$$\begin{split} \mathrm{NS}(R_9) &\simeq \langle \mathcal{O}_{R_9}, F \rangle \oplus \mathrm{MW}(\mathcal{E}_{R_{R_9}}) \oplus \sum_{v \in \mathsf{reducible} \ \mathsf{fibers}} \Theta_{v,i} \\ &\simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle. \end{split}$$

1 Shioda-Tate formula asserts that:

$$\begin{split} \mathrm{NS}(R_9) &\simeq \langle \mathcal{O}_{R_9}, F \rangle \oplus \mathrm{MW}(\mathcal{E}_{R_{R_9}}) \oplus \sum_{v \in \mathsf{reducible} \ \mathsf{fibers}} \Theta_{v,i} \\ &\simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle. \end{split}$$

2 The absolute Galois group $G_{\bar k}$ acts on ${\sf NS}(R_9)$ preserving the intersection pairing.

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

1 Shioda—Tate formula asserts that:

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

• \mathcal{O}_{R_9} & the class of the smooth fiber F are def. / k.

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- \mathcal{O}_{R_9} & the class of the smooth fiber F are def. / k.
- Each reducible fiber is globally def. / k,

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- \mathcal{O}_{R_9} & the class of the smooth fiber F are def. / k.
- Each reducible fiber is globally def. $/\ k$,
 - hence, Θ_0 is def. / k.

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- \mathcal{O}_{R_9} & the class of the smooth fiber F are def. / k.
- Each reducible fiber is globally def. / k,
 - hence, Θ_0 is def. / k.
- Notice that Θ_0 intersects $\Theta_1 \& \Theta_8$,

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- \mathcal{O}_{R_9} & the class of the smooth fiber F are def. / k.
- Each reducible fiber is globally def. / k,
 - hence, Θ_0 is def. / k.
- Notice that Θ_0 intersects $\Theta_1 \& \Theta_8$,
 - hence, Θ_1 & Θ_8 are $G_{\bar k}$ -conjugate & form as a pair a $G_{\bar k}$ -orbit.

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- \mathcal{O}_{R_9} & the class of the smooth fiber F are def. / k.
- Each reducible fiber is globally def. / k,
 - hence, Θ_0 is def. / k.
- Notice that Θ_0 intersects $\Theta_1 \& \Theta_8$,
 - hence, Θ_1 & Θ_8 are $G_{\bar k}$ -conjugate & form as a pair a $G_{\bar k}$ -orbit.
- This happens for the other components.

1 Shioda—Tate formula asserts that:

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- \mathcal{O}_{R_9} & the class of the smooth fiber F are def. / k.
- Each reducible fiber is globally def. $/\ k$,
 - hence, Θ_0 is def. / k.
- Notice that Θ_0 intersects $\Theta_1 \& \Theta_8$,
 - hence, Θ_1 & Θ_8 are $G_{ar k}$ -conjugate & form as a pair a $G_{ar k}$ -orbit.
- This happens for the other components.

Denote by k_R/k the quad. extension where the fiber components are defined.

3 Come back to the example

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

1 Shioda—Tate formula asserts that:

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, \underline{t_1}, \underline{t_2}, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

• The Mordell–Weil group is globally defined over *k*.

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, \underline{t_1}, \underline{t_2}, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- The Mordell–Weil group is globally defined over k.
- Let C be a non zero section (i.e. a (-1)-curve).

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, \underline{t_1}, \underline{t_2}, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- The Mordell–Weil group is globally defined over k.
- Let C be a non zero section (i.e. a (-1)-curve).
 - C intersects a unique fiber component def. $/\ k_R$.

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, \underline{t_1}, \underline{t_2}, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- The Mordell–Weil group is globally defined over *k*.
- Let C be a non zero section (i.e. a (-1)-curve).
 - C intersects a unique fiber component def. $/\ k_R$.
 - This point of intersection is mapped, by the action of $G_{\bar{k}}$, to another point of intersection of a fiber component an a section.

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- The Mordell–Weil group is globally defined over k.
- Let C be a non zero section (i.e. a (-1)-curve).
 - C intersects a unique fiber component def. $/\ k_R$.
 - This point of intersection is mapped, by the action of $G_{\bar k}$, to another point of intersection of a fiber component an a section. Either to itself,

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- The Mordell–Weil group is globally defined over *k*.
- Let C be a non zero section (i.e. a (-1)-curve).
 - C intersects a unique fiber component def. $/\ k_R$.
 - This point of intersection is mapped, by the action of $G_{\bar k}$, to another point of intersection of a fiber component an a section. Either to itself, or to a unique other point of intersection.

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- The Mordell–Weil group is globally defined over *k*.
- Let C be a non zero section (i.e. a (-1)-curve).
 - C intersects a unique fiber component def. $/\ k_R$.
 - This point of intersection is mapped, by the action of $G_{\bar{k}}$, to another point of intersection of a fiber component an a section. Either to itself, or to a unique other point of intersection.
- The point of intersection is def. / k_R & the section C has a k_R -point,

$$NS(R_9) \simeq \langle \mathcal{O}_{R_9}, F, t_1, t_2, \Theta_0, \Theta_1, \cdots, \Theta_8 \rangle.$$

- The Mordell–Weil group is globally defined over k.
- Let C be a non zero section (i.e. a (-1)-curve).
 - C intersects a unique fiber component def. $/\ k_R$.
 - This point of intersection is mapped, by the action of $G_{\bar{k}}$, to another point of intersection of a fiber component an a section. Either to itself, or to a unique other point of intersection.
- The point of intersection is def. / k_R & the section C has a k_R -point,
 - hence C is def. / k_R .

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron-Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2.

➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES:

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

- ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES:
 - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$.

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

- ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES:
 - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$.
- Indeed, extremal RES with repeated reducible fibers have their Néron-Severi group defined, in general, over extensions of larger degree.

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

- ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES:
 - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$.
- Indeed, extremal RES with repeated reducible fibers have their Néron-Severi group defined, in general, over extensions of larger degree.

Notations

- Let use denote by k_R the quadratic extension of k over which the Néron-Severi group NS(R) admits a set of generators given by fiber components and sections of the elliptic fibration on R.
- ▶ Denote by G_R the Galois group $Gal(k_R/k)$.
- Let $k_{R,\tau}$ be the compositum of the fields k_R and k_{τ} .

3 Upshot

Prove that a genus 1 fibration on X admits a section over a field which depends on the ${\bf action}$ of the cover involution τ on the fibers of the genus 1 fibration.

3 Results

Theorem (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k with distinct reducible fibers. Let X be a K3 surface obtained as a double cover of R branched on two smooth fibers conjugate under $G_{\overline{k}}$, τ the cover involution and η a genus 1 fibration on X. Then the following hold.

- i) If η is of type 1 w.r.t. τ then η is defined over k_R and admits a section over $k_{R,\tau}$.
- ii) If η is of type 2 then it is defined and admits a section over k.
- iii) If η is of type 3 then it is defined and admits a section over $k_{R,\tau}$.

Let η be a genus 1 fibration on X.

Assume that η is of type 2 w.r.t τ .

- Assume that η is of type 2 w.r.t τ .
 - au does not preserve all the fibers of η , but maps a fiber of η to another one. In this case au is induced by an involution of the basis of $\eta: X \to \mathbb{P}^1$. It fixes exactly two fibers and au^* preserves the class of a fiber of η .

- Assume that η is of type 2 w.r.t τ .
- ▶ Remark that we assumed that the branch locus is smooth,

- Assume that η is of type 2 w.r.t τ .
- Remark that we assumed that the branch locus is smooth.
 - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_{R} .

- Assume that η is of type 2 w.r.t τ .
- Remark that we assumed that the branch locus is smooth,
 - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_R .
- ▶ We know that \mathcal{E}_X & \mathcal{O}_X are def. / k,

- Assume that η is of type 2 w.r.t τ .
- Remark that we assumed that the branch locus is smooth,
 - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_R .
- ▶ We know that \mathcal{E}_X & \mathcal{O}_X are def. / k,
 - hence, $\eta = \mathcal{E}_X$ is defined & admits a section /k.

- Assume that η is of type 2 w.r.t τ .
- Remark that we assumed that the branch locus is smooth,
 - thus, there is only one fibration of type 2 w.r.t. τ , namely \mathcal{E}_X the one induced by \mathcal{E}_R .
- ▶ We know that \mathcal{E}_X & \mathcal{O}_X are def. / k,
 - hence, $\eta = \mathcal{E}_X$ is defined & admits a section /k.

Let η be a genus 1 fibration on X.

Assume that η is of type 1 w.r.t τ .

- Assume that η is of type 1 w.r.t τ .
 - τ preserves all the fibers of η .

- Assume that η is of type 1 w.r.t τ .
 - τ preserves all the fibers of η .
 - Hence, each fiber is the pull-back of a conic C in R (i.e that is a rational curve such that $C.(-K_R) = 2$).

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.
- ▶ The fibers of η are fixed by τ ,

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.
- ▶ The fibers of η are fixed by τ ,
 - ullet the pull-back C_0 is also def. / k_R , and

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.
- ▶ The fibers of η are fixed by τ ,
 - the pull-back C_0 is also def. $/\ k_R$, and
 - its class moves in X giving η . Hence, η is def. / k_R .

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.
- ▶ The fibers of η are fixed by τ ,
 - the pull-back C_0 is also def. $/\ k_R$, and
 - its class moves in X giving η . Hence, η is def. $/ k_R$.

Let η be a genus 1 fibration on X.

Assume that η is of type 3 w.r.t τ .

- Assume that η is of type 3 w.r.t τ .
 - τ maps fibers of η to fibers of another elliptic fibration. In this case τ^* does not preserve the class of the generic fiber of η .

- Assume that η is of type 3 w.r.t τ .
 - au maps fibers of η to fibers of another elliptic fibration. In this case au^* does not preserve the class of the generic fiber of η .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- \triangleright NS(R) is generated by curves def. $/k_R$,

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.
- ▶ The fibers of η are **not** fixed by τ ,

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.
- ▶ The fibers of η are **not** fixed by τ ,
 - hence, the pull-back D is not preserve by τ and thus def. / $k_{R,\tau}$ (a quad. extension of k_R), and

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - ullet hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.
- ▶ The fibers of η are **not** fixed by τ ,
 - hence, the pull-back D is not preserve by au and thus def. / $k_{R, au}$ (a guad. extension of k_R), and
 - its class moves in X giving η . Hence, η is def. $/k_{R,\tau}$.

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - ullet hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.
- ▶ The fibers of η are **not** fixed by τ ,
 - hence, the pull-back D is not preserve by au and thus def. / $k_{R, au}$ (a guad. extension of k_R), and
 - its class moves in X giving η . Hence, η is def. $/ k_{R,\tau}$.

Let S be a section of a fibration of type 1 or 3,

- Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.

- ▶ Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.
- ▶ Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map.

- ▶ Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.
- ▶ Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map.
 - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R.

- ▶ Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.
- ▶ Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map.
 - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R.
 - Moreover, all negative curves in R are defined over k_R . Hence, S is defined over $k_{R,\tau}$.

- Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.
- Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map.
 - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R.
 - Moreover, all negative curves in R are defined over k_R . Hence, S is defined over $k_{R,\tau}$.

3 Results

Theorem (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k with distinct reducible fibers. Let X be a K3 surface obtained as a double cover of R branched on two smooth fibers conjugate under $G_{\overline{k}}$, τ the cover involution and η a genus 1 fibration on X. Then the following hold.

- i) If η is of type 1 w.r.t. τ then η is defined over k_R and admits a section over $k_{R,\tau}$.
- ii) If η is of type 2 then it is defined and admits a section over k.
- iii) If η is of type 3 then it is defined and admits a section over $k_{R,\tau}$.

3 Examples

3 Examples

3 Examples

Dank u zeer !