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1 K3 surfaces

Erich Kähler Kunihiko Kodaira Ernst Kummer

Definition
An algebraic K3 surface X is a smooth, projective, 2-dimensional
variety defined over a field k such that :
I ωX ' OX ,
I H1(X,OX) = 0.
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1 K3 surfaces

Examples

1 A smooth quartic surface in P3
k.

2 A Kummer surface.

5 Fields of definition of elliptic fibrations



1 Elliptic fibrations

Definition
An elliptic fibration of a surface S is a surjective morphism

E : S → C

where C is a smooth curve defined over the field k, such that:
1 almost all the fibers are smooth genus 1 curves,
2 at least one singular fiber,
3 at least one section (the zero section).
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1 Elliptic fibrations

1 Denote by E the general fiber of E ; which is an elliptic curve
defined over the function field k(C).

2 Denote by MW(E) the Mordell–Weil group of E :

MW(E) = E(k(C)) = {sections of E : S → C}.
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2 Outline

1 General introduction & motivations

2 Preliminaries, setting & goals
Setting
Goals

3 Results & examples
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2 Rational elliptic surfaces

Definition
A rational elliptic surface R is a smooth rational surface endowed with
an elliptic fibration ER : R→ P1.

Example
A pencil of cubics in P2

Q
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2 Extremal rational elliptic surfaces

Definition
An extremal rational elliptic surface R is such that
I rank (MW(ER)) = 0,
I R has a maximal Picard number.

Theorem (Miranda & Persson 1996)

There exist only 16 fiber configurations of extremal rational elliptic
surfaces.
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2 Setting

I k a number field;

I Gk̄ = Gal(k̄/k) the absolute Galois
group;

I R a extremal rational elliptic surface
def. / k;

I ER the elliptic fibration def. / k &
OR the zero section def. / k;

I d is a double cover def. / k branched
on P1 and P2;

I the two branched fibers E−1
R (P1) and

E−1
R (P2) are smooth and reduced

fibers, Gk̄-conjugate.

I X ' R×d P1 is a K3
surface def. / k;

I the double cover d
induces the elliptic
fibration EX & the
zero section OX both
def. / k.
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2 Remarks and notations

I R×d P1 is endowed with an involution which is the cover
involution of R×d P1 → R induced by d.

I This involution can be extended to an involution of X ' R×d P1

denoted τ ∈ Aut(X).
I By construction, τ is a non-symplectic involution on X (i.e. does

not preserves the symplectic form defined on X).
I Denote by kτ/k the quadratic extension of k such that

Gal(kτ/k) =< τ >.
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2 Recap & Goals

R extremal
rational
elliptic

surface / k

X ' R×d P1 K3
surf. / k obtained
as a double cover

of R

Determine the fields of
definition of the
distinct elliptic
fibrations on X

1 Classify all the possible elliptic fibrations on X.
2 For each elliptic fibration on X

1 determine its field of definition i.e. the field over which the class
of a fiber & a section are defined;

2 give an upper bound for the degree of the field over which the
Mordell–Weil group of the fibration admits a set of generators.
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2 Upshot

We prove that a genus 1 fibration on X admits a section
over a field which depends on the action of the cover

involution τ on the fibers of the genus 1 fibration.
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2 Steps

In order to prove that a genus 1 fibration on X admits a
section over a field which depends on the action of the
cover involution τ on the fibers of the genus 1 fibration.

1 Classify all the possible elliptic fibrations on X.

1 Niemeier ’73, Nishiyama ’96 and Garbagnati & Salgado 2018.
2 For each elliptic fibration on X

1 determine the type of the fibration w.r.t. the cover involution τ
and hence the field of definition of the fibration;

2 first determine the Mordell–Weil group of the fibration and then
give an upper bound for the degree of the field over which the
Mordell–Weil group admits a set of generators.
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2 Some extra definition

Definition
Let η be an elliptic fibration on X then it is
I of type 1 with respect to τ , if τ preserves all the fibers of η;
I of type 2 with respect to τ , if τ does not preserve all the fibers of
η, but maps a fiber of η to another one. In this case τ is induced
by an involution of the basis of η : X → P1. It fixes exactly two
fibers and τ∗,1 preserves the class of a fiber of η;

I of type 3, if τ maps fibers of η to fibers of another elliptic
fibration. In this case τ∗ does not preserve the class of the
generic fiber of η.

1We denote by τ∗ the involution induced by τ on NS(X)
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3 Results

Lemma (C.-F.,Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume
that all reducible fibers of the elliptic fibration are distinct. Then the
Néron–Severi group NS(R) admits generators defined over a field
extension of k of degree at most 2.
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3 Example

I R9 an extremal rational elliptic surface def. / k with reducible
fiber of type I9;

I X9 a K3 surface, defined over k, obtained by a double cover of
R9 branched in two smooth Gk̄-conjugate fibers;

I ER9 the elliptic fibration def. / k & OR9 the zero section def. / k.

I The singular fibers of R9 are I9 + 3I1.
I The Mordell-Weil group is Z/3Z = {OR9 , t1, t2}.
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3 Example

C8
C0
C1
C2

C3

C4C5

C6

C7

OR9

t1t2

The fiber I9

OR9t2 t1

Dual graph Ã8
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3 Idea of the proof

1 Shioda–Tate formula asserts that:

NS(R) ' 〈O, F 〉 ⊕MW(ER)⊕
∑

v∈reducible fibers
i∈Sv

Θv,i,

where MW(ER) is a finite group, and Θv,i are the components of
the reducible fiber E−1

R (v) with nv its number of components and
Sv = {0, · · · , nv − 1}.

2 Shioda–Tate formula asserts that:

NS(R9) ' 〈OR9 , F 〉 ⊕MW(ERR9
)⊕

∑
v∈reducible fibers

i∈Sv

Θv,i

' 〈OR9 , F, t1, t2,Θ0,Θ1, · · · ,Θ8〉.

3 The absolute Galois group Gk̄ acts on NS(R9) preserving the
intersection pairing.
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3 Idea of the proof

1 Shioda–Tate formula asserts that:

NS(R9) ' 〈OR9 , F , t1, t2,Θ0,Θ1, · · · ,Θ8〉.

• OR9 & the class of the smooth fiber F are def. / k.
• Each reducible fiber is globally def. / k,

- hence, Θ0 is def. / k.
• Notice that Θ0 intersects Θ1 & Θ8,

- hence, Θ1 & Θ8 are Gk̄-conjugate & form as a pair a Gk̄-orbit.
• This happens for the other components.

Denote by kR/k the quad. extension where the fiber components are
defined.
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1 Shioda–Tate formula asserts that:
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3 Come back to the example

OR9t2 t1

Θ0 Θ1

Θ2

Θ3Θ4Θ5Θ6

Θ7

Θ8

Dual graph Ã8
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3 Idea of the proof

1 Shioda–Tate formula asserts that:

NS(R9) ' 〈OR9 , F, t1, t2,Θ0,Θ1, · · · ,Θ8〉.

• The Mordell–Weil group is globally defined over k.
• Let C be a non zero section (i.e. a (−1)-curve).

- C intersects a unique fiber component def. / kR.
- This point of intersection is mapped, by the action of Gk̄, to

another point of intersection of a fiber component an a
section.Either to itself, or to a unique other point of intersection.

• The point of intersection is def. / kR & the section C has a
kR-point,

- hence C is def. / kR.
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3 Results

Lemma (C.-F.,Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume
that all reducible fibers of the elliptic fibration are distinct. Then the
Néron-Severi group NS(R) admits generators defined over a field
extension of k of degree at most 2.

I This Lemma is excluding 5 out of 16 configuration of reducible
fibers on extremal RES:
• (2I∗

0 ), (2I5, 2I1), (2I4, 2I2), (I∗
2 , 2I2) & (4I3).

I Indeed, extremal RES with repeated reducible fibers have their
Néron-Severi group defined, in general, over extensions of larger
degree.
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3 Notations

I Let use denote by kR the quadratic extension of k over which the
Néron-Severi group NS(R) admits a set of generators given by
fiber components and sections of the elliptic fibration on R.

I Denote by GR the Galois group Gal(kR/k).
I Let kR,τ be the compositum of the fields kR and kτ .
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3 Upshot

Prove that a genus 1 fibration on X admits a section over
a field which depends on the action of the cover

involution τ on the fibers of the genus 1 fibration.
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3 Results

Theorem (C.-F.,Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k with
distinct reducible fibers. Let X be a K3 surface obtained as a double
cover of R branched on two smooth fibers conjugate under Gk̄, τ the
cover involution and η a genus 1 fibration on X. Then the following
hold.

i) If η is of type 1 w.r.t. τ then η is defined over kR and admits a
section over kR,τ .

ii) If η is of type 2 then it is defined and admits a section over k.
iii) If η is of type 3 then it is defined and admits a section over kR,τ .
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3 Proof - Type 2 w.r.t. τ

Let η be a genus 1 fibration on X.
I Assume that η is of type 2 w.r.t τ .

I Remark that we assumed that the branch locus is smooth,
• thus, there is only one fibration of type 2 w.r.t. τ , namely EX the

one induced by ER.
I We know that EX &OX are def. / k,

• hence, η = EX is defined & admits a section /k.

30 Fields of definition of elliptic fibrations



3 Proof - Type 2 w.r.t. τ

Let η be a genus 1 fibration on X.
I Assume that η is of type 2 w.r.t τ .
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I Assume that η is of type 2 w.r.t τ .
I Remark that we assumed that the branch locus is smooth,

• thus, there is only one fibration of type 2 w.r.t. τ , namely EX the
one induced by ER.

I We know that EX &OX are def. / k,
• hence, η = EX is defined & admits a section /k.
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3 Proof - Type 1 w.r.t. τ

Let η be a genus 1 fibration on X.
I Assume that η is of type 1 w.r.t τ .

• Hence, each fiber is the pull-back of a conic C in R.
I NS(R) is generated by curves def. /kR,

• hence, the class of C has a divisor C0 whose components are def.
/kR.

I The fibers of η are fixed by τ ,
• the pull-back C0 is also def. / kR, and
• its class moves in X giving η. Hence, η is def. / kR.
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• τ preserves all the fibers of η.

• Hence, each fiber is the pull-back of a conic C in R (i.e that is a
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3 Proof - Type 3 w.r.t. τ

Let η be a genus 1 fibration on X.
I Assume that η is of type 3 w.r.t τ .

• Hence, each fiber is the pull-back of a non-complete linear system
on R.

I NS(R) is generated by curves def. /kR,
• hence, the class of the non-complete linear system on R has a

divisor D whose components are def. /kR.
I The fibers of η are not fixed by τ ,

• hence, the pull-back D is not preserve by τ and thus def. / kR,τ
(a quad. extension of kR), and

• its class moves in X giving η. Hence, η is def. / kR,τ .
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3 Proof - last step

I Let S be a section of a fibration of type 1 or 3,

• then S is a rational curve on X such that S2 = −2.
I Let π : X → X/τ 'bir R be the quotient map.

• π(S) is either a (−1)-curve or a (−2)-curve in R.
• Moreover, all negative curves in R are defined over kR. Hence, S

is defined over kR,τ .
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3 Results

Theorem (C.-F.,Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k with
distinct reducible fibers. Let X be a K3 surface obtained as a double
cover of R branched on two smooth fibers conjugate under Gk̄, τ the
cover involution and η a genus 1 fibration on X. Then the following
hold.

i) If η is of type 1 w.r.t. τ then η is defined over kR and admits a
section over kR,τ .

ii) If η is of type 2 then it is defined and admits a section over k.
iii) If η is of type 3 then it is defined and admits a section over kR,τ .
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