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1 K3 surfaces

Erich Kähler Kunihiko Kodaira Ernst Kummer

Definition
An algebraic K3 surface X is a smooth, projective, 2-dimensional
variety defined over a field k such that :
I ωX ' OX ,
I H1(X,OX) = 0.
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1 K3 surfaces

Examples

1 A smooth quartic surface in P3
k.

2 A Kummer surface.

• Let A be an abelian surface def. /k, char(k) 6= 2.
Let ι : A→ A such that ι(x) = −x.
Consider Fix(ι) = A[2] = {P1, ..., P16}.
Denote by Ã the blow up of A along those 16 points and consider
the lift ι̃ : Ã→ Ã.
The Kummer surface associated to A is the K3 surface X := Ã/ι̃.
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1 Elliptic fibrations

Definition
An elliptic fibration of a surface S is a surjective morphism

E : S → C

where C is a smooth curve defined over the field k, such that:
1 almost all the fibers are smooth genus 1 curves,
2 at least one singular fiber,
3 at least one section (the zero section).
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1 Elliptic fibrations
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1 Elliptic fibrations

1 Denote by E the general fiber of E ; which is an elliptic curve
defined over the function field k(C).

2 Denote by MW(E) the Mordell–Weil group of E :

MW(E) = E(k(C)) = {sections of E : S → C}.
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2 Rational elliptic surfaces

Definition
A rational elliptic surface R is a smooth rational surface endowed with
an elliptic fibration ER : R→ P1.

Example
A pencil of cubics in P2

Q
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2 Extremal rational elliptic surfaces

Definition
An extremal rational elliptic surface R is such that
I rank (MW(ER)) = 0,
I R has a maximal Picard number.

Theorem (Miranda & Persson 1996)

There exist only 16 fiber configurations of extremal rational elliptic
surfaces.
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2 Extremal rational elliptic surfaces

Theorem (Miranda & Persson 1996)

There exist only 16 fiber configurations of extremal rational elliptic
surfaces.

II, II∗ III, III∗ IV, IV ∗ 2I∗0
II∗, 2I1 III∗, I2, I1 IV ∗, I3, I1 I∗4 , 2I1
I∗1 , I4, I1 I∗2 , 2I2 I9, 3I1 I8, I2, 2I1
2I5, 2I1 I4, I3, I2, I1 2I4, 2I2 4I3

Table: List of the 16 configurations of singular fibers
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2 Setting

I k : a number field;
I Gk̄ = Gal(k̄/k);

I R : a extremal rational elliptic
surface def. / k;

I ER : the elliptic fibration def. / k;
I OR : the zero section def. / k;
I d : double cover def. / k branched

on P1 & P2;
I Assume E−1

R (P1) & E−1
R (P2) are

smooth, reduced fibers and
Gk̄-conjugate.

I ⇒ EX &OX are def. /k.
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2 Remarks and notations

I R×P1 P1 is endowed with an involution which is the cover
involution of R×P1 P1 → R induced by d.

I This involution can be extended to an involution of
X ' R×P1 P1 denoted τ ∈ Aut(X).

I By construction, τ is a non-symplectic involution on X (i.e. does
not preserves the symplectic form defined on X).

I Denote by kτ/k the quadratic extension of k such that
Gal(kτ/k) =< τ >.
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2 Recap & Goals

R extremal
rational
elliptic

surface / k

X ' R×P1 P1 K3
surf. / k obtained
as a double cover

of R

Determine the fields of
definition of the
distinct elliptic
fibrations on X

1 Classify all the possible elliptic fibrations on X.
2 For each elliptic fibration on X

1 determine its field of definition i.e. the field over which the class
of a fiber & a section are defined;

2 give an upper bound for the degree of the field over which the
Mordell–Weil group of the fibration admits a set of generators.
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2 Upshot

We prove that a genus 1 fibration on X admits a section
over a field which depends on the action of the cover

involution τ on the fibers of the genus 1 fibration.
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2 Steps

In order to prove that a genus 1 fibration on X admits a
section over a field which depends on the action of the
cover involution τ on the fibers of the genus 1 fibration.

1 Classify all the possible elliptic fibrations on X.

1 Niemeier ’73, Nishiyama ’96 and Garbagnati & Salgado 2018.
2 For each elliptic fibration on X

1 determine the type of the fibration w.r.t. the cover involution τ
and hence the field of definition of the fibration;

2 first determine the Mordell–Weil group of the fibration and then
give an upper bound for the degree of the field over which the
Mordell–Weil group admits a set of generators.
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2 Some extra definition

Definition
Let η be an elliptic fibration on X then it is
I of type 1 with respect to τ , if τ preserves all the fibers of η;
I of type 2 with respect to τ , if τ does not preserve all the fibers of
η, but maps a fiber of η to another one. In this case τ is induced
by an involution of the basis of η : X → P1. It fixes exactly two
fibers and τ∗,1 preserves the class of a fiber of η;

I of type 3, if τ maps fibers of η to fibers of another elliptic
fibration. In this case τ∗ does not preserve the class of the
generic fiber of η.

1We denote by τ∗ the involution induced by τ on NS(X)
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3 Results

Lemma (C.-F.,Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume
that all reducible fibers of the elliptic fibration are distinct. Then the
Néron–Severi group NS(R) admits generators defined over a field
extension of k of degree at most 2.

II, II∗ III, III∗ IV, IV ∗ 2I∗0
II∗, 2I1 III∗, I2, I1 IV ∗, I3, I1 I∗4 , 2I1
I∗1 , I4, I1 I∗2 , 2I2 I9, 3I1 I8, I2, 2I1
2I5, 2I1 I4, I3, I2, I1 2I4, 2I2 4I3

Table: List of the 16 configurations of singular fibers
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3 Proof

Let R be an extremal rational elliptic surface def. /k such that all
reducible fibers of ER are distinct.

Goal. Prove that NS(R) admits a set of generators defined over, at
most, a quadratic extension of k.

1 Shioda–Tate formula asserts that:

NS(R)/T ' MW(ER) with T = 〈O, F 〉 ⊕
∑
v∈Red
i∈Sv

Θv,i,

2 The absolute Galois group Gk̄ acts on NS(R) preserving the
intersection pairing.
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3 Proof

T = 〈O, F 〉 ⊕
∑
v∈Red
i∈Sv

Θv,i

I The zero section O & the class of a smooth fiber F are def. /k.
I Reducible fibers. Recall that R is an extremal rational elliptic

surface such that all the reducible fibers are distinct.
• Miranda & Persson ’96 ⇒ we have 11 possible configurations.
• Let Fv be a reducible fiber.

- If Fv has exactly 2 fiber components Θv,0 and Θv,1 then they are
def. /k.
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• Miranda & Persson ’96 ⇒ we have 11 possible configurations.

• Let Fv be a reducible fiber.
- If Fv has exactly 2 fiber components Θv,0 and Θv,1 then they are
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3 Proof

I Assume that Fv has at least 3 fiber components. We know that
Fv is globally def. /k.

I The trivial component Θv,0 is def. /k and intersect at most 2
other fiber components Θv,i and Θv,j .
• Θv,i and Θv,j are Gk̄-conjugate & as a pair they form a Gk̄-orbit.
• The same happens to all other components that are not def. /k.

I Let us denote by kR,v the quadratic extension /k over which the
fiber components Θv,i of Fv are defined.
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3 Proof

MW(ER)

I Let S ∈ MW(ER), we know that S is a (−1)-curve in NS(R) and
that MW(ER) is globally def. /k.

I Let Fv be a reducible fiber with at least 3 fiber components.
• S intersects a unique fiber component Θv,i of Fv in the point
P := S ∩Θv,i.

I Hence, S is defined either over k or over kR,v.
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3 Results

Lemma (C.-F.,Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume
that all reducible fibers of the elliptic fibration are distinct. Then the
Néron-Severi group NS(R) admits generators defined over a field
extension of k of degree at most 2.

I This Lemma is excluding 5 out of 16 configuration of reducible
fibers on extremal RES:
• (2I∗

0 ), (2I5, 2I1), (2I4, 2I2), (I∗
2 , 2I2) & (4I3).

I Indeed, extremal RES with repeated reducible fibers have their
Néron-Severi group defined, in general, over extensions of larger
degree.
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3 Example

II, II∗ III, III∗ IV, IV ∗ 2I∗0
II∗, 2I1 III∗, I2, I1 IV ∗, I3, I1 I∗4 , 2I1
I∗1 , I4, I1 I∗2 , 2I2 I9, 3I1 I8, I2, 2I1
2I5, 2I1 I4, I3, I2, I1 2I4, 2I2 4I3

Table: List of the 16 configurations of singular fibers

I R9 an extremal rational elliptic surface def. / k with singular
fibers I9 + 3I1;

I ER9 the elliptic fibration def. / k & OR9 the zero section def. / k;
I The Mordell-Weil group is MW(ER9) = Z/3Z = {OR9 , t1, t2}.
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3 Example
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3 Notations

I Let use denote by kR the quadratic extension of k over which the
Néron-Severi group NS(R) admits a set of generators given by
fiber components and sections of the elliptic fibration on R.

I Denote by GR the Galois group Gal(kR/k).
I Let kR,τ be the compositum of the fields kR and kτ .

28 Fields of definition of elliptic fibrations



3 Upshot

Prove that a genus 1 fibration on X admits a section over
a field which depends on the action of the cover

involution τ on the fibers of the genus 1 fibration.

29 Fields of definition of elliptic fibrations



3 Results

Theorem (C.-F.,Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k with
distinct reducible fibers. Let X be a K3 surface obtained as a double
cover of R branched on two smooth fibers conjugate under Gk̄, τ the
cover involution and η a genus 1 fibration on X. Then the following
hold.

i) If η is of type 1 w.r.t. τ then η is defined over kR and admits a
section over kR,τ .

ii) If η is of type 2 then it is defined and admits a section over k.
iii) If η is of type 3 then it is defined and admits a section over kR,τ .
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3 Proof - Type 2 w.r.t. τ

Let η be a genus 1 fibration on X.
I Assume that η is of type 2 w.r.t τ .

I Remark that we assumed that the branch locus is smooth,
• thus, there is only one fibration of type 2 w.r.t. τ , namely EX the

one induced by ER.
I We know that EX &OX are def. / k,

• hence, η = EX is defined & admits a section /k.
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Let η be a genus 1 fibration on X.
I Assume that η is of type 2 w.r.t τ .
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• hence, η = EX is defined & admits a section /k.
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3 Proof - Type 1 w.r.t. τ

Let η be a genus 1 fibration on X.
I Assume that η is of type 1 w.r.t τ .

• Hence, each fiber is the pull-back of a conic C in R.
I NS(R) is generated by curves def. /kR,

• hence, the class of C has a divisor C0 whose components are def.
/kR.

I The fibers of η are fixed by τ ,
• the pull-back C0 is also def. / kR, and
• its class moves in X giving η. Hence, η is def. / kR.
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3 Proof - Type 3 w.r.t. τ

Let η be a genus 1 fibration on X.
I Assume that η is of type 3 w.r.t τ .

• Hence, each fiber is the pull-back of a non-complete linear system
on R.

I NS(R) is generated by curves def. /kR,
• hence, the class of the non-complete linear system on R has a

divisor D whose components are def. /kR.
I The fibers of η are not fixed by τ ,

• hence, the pull-back D is not preserve by τ and thus def. / kR,τ
(a quad. extension of kR), and

• its class moves in X giving η. Hence, η is def. / kR,τ .
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3 Proof - last step

I Let S be a section of a fibration of type 1 or 3,

• then S is a rational curve on X such that S2 = −2.
I Let π : X → X/τ 'bir R be the quotient map.

• π(S) is either a (−1)-curve or a (−2)-curve in R.
• Moreover, all negative curves in R are defined over kR. Hence, S

is defined over kR,τ .

34 Fields of definition of elliptic fibrations



3 Proof - last step

I Let S be a section of a fibration of type 1 or 3,
• then S is a rational curve on X such that S2 = −2.

I Let π : X → X/τ 'bir R be the quotient map.
• π(S) is either a (−1)-curve or a (−2)-curve in R.
• Moreover, all negative curves in R are defined over kR. Hence, S

is defined over kR,τ .

34 Fields of definition of elliptic fibrations



3 Proof - last step

I Let S be a section of a fibration of type 1 or 3,
• then S is a rational curve on X such that S2 = −2.

I Let π : X → X/τ 'bir R be the quotient map.

• π(S) is either a (−1)-curve or a (−2)-curve in R.
• Moreover, all negative curves in R are defined over kR. Hence, S

is defined over kR,τ .

34 Fields of definition of elliptic fibrations



3 Proof - last step

I Let S be a section of a fibration of type 1 or 3,
• then S is a rational curve on X such that S2 = −2.

I Let π : X → X/τ 'bir R be the quotient map.
• π(S) is either a (−1)-curve or a (−2)-curve in R.

• Moreover, all negative curves in R are defined over kR. Hence, S
is defined over kR,τ .

34 Fields of definition of elliptic fibrations



3 Proof - last step

I Let S be a section of a fibration of type 1 or 3,
• then S is a rational curve on X such that S2 = −2.

I Let π : X → X/τ 'bir R be the quotient map.
• π(S) is either a (−1)-curve or a (−2)-curve in R.
• Moreover, all negative curves in R are defined over kR. Hence, S

is defined over kR,τ .

34 Fields of definition of elliptic fibrations



3 Proof - last step

I Let S be a section of a fibration of type 1 or 3,
• then S is a rational curve on X such that S2 = −2.

I Let π : X → X/τ 'bir R be the quotient map.
• π(S) is either a (−1)-curve or a (−2)-curve in R.
• Moreover, all negative curves in R are defined over kR. Hence, S

is defined over kR,τ .

34 Fields of definition of elliptic fibrations



3 Results

Theorem (C.-F.,Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k with
distinct reducible fibers. Let X be a K3 surface obtained as a double
cover of R branched on two smooth fibers conjugate under Gk̄, τ the
cover involution and η a genus 1 fibration on X. Then the following
hold.

i) If η is of type 1 w.r.t. τ then η is defined over kR and admits a
section over kR,τ .

ii) If η is of type 2 then it is defined and admits a section over k.
iii) If η is of type 3 then it is defined and admits a section over kR,τ .
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3 Examples
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3 Examples

OX9T2 T1
τ9

Type 1
E : X → P1;
Reducible fiber I16;
Dual graph Ã15;
MW(E) = Z/2Z⊕ Z.
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3 Examples

OX9T2 T1
τ9

Type 2
E : X → P1;
Reducible fiber 2I9;
Dual graph Ã8 ⊕ Ã8;
MW(E) = Z/3Z.
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3 Examples

OX9T2 T1
τ9

Type 3
E : X → P1;
Reducible fiber I∗8 + I4;
Dual graph D̃12 ⊕ Ã3;
MW(E) = Z/2Z⊕ Z.
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