KU LEUVEN Fields of definition of elliptic fibrations on covers of certain extremal rational elliptic surfaces V. Cantoral Farfán KU Leuven June 2020 ### 0 Joint work with Cecilia Salgado Antonela Trbović Rosa Winter Alice Garbagnati #### 0 Outline - **1** General introduction & motivations - 2 Preliminaries, setting & goals - 3 Results & examples #### 1 Outline - General introduction & motivationsK3 surfacesElliptic fibrations - Preliminaries, setting & goals - Results & examples Erich Kähler Kunihiko Kodaira Ernst Kummer Erich Kähler Kunihiko Kodaira Ernst Kummer #### Definition An algebraic K3 surface X is a smooth, projective, 2-dimensional variety defined over a field k such that : - \blacktriangleright $\omega_X \simeq \mathcal{O}_X$, - ► $H^1(X, \mathcal{O}_X) = 0.$ ### Examples - 1 A smooth quartic surface in \mathbb{P}^3_k . - 2 A Kummer surface. ### Examples - 1 A smooth quartic surface in \mathbb{P}^3_k . - 2 A Kummer surface. - Let A be an abelian surface def. /k, $char(k) \neq 2$. ### **Examples** - 1 A smooth quartic surface in \mathbb{P}^3_k . - 2 A Kummer surface. - Let A be an abelian surface def. /k, $char(k) \neq 2$. Let $\iota: A \to A$ such that $\iota(x) = -x$. Consider $Fix(\iota) = A[2] = \{P_1, ..., P_{16}\}$. ### Examples - 1 A smooth quartic surface in \mathbb{P}^3_k . - 2 A Kummer surface. - Let A be an abelian surface def. /k, $char(k) \neq 2$. Let $\iota: A \to A$ such that $\iota(x) = -x$. Consider $Fix(\iota) = A[2] = \{P_1, ..., P_{16}\}$. Denote by \tilde{A} the blow up of A along those 16 points and consider the lift $\tilde{\iota}: \tilde{A} \to \tilde{A}$. ### Examples - 1 A smooth quartic surface in \mathbb{P}^3_k . - 2 A Kummer surface. - Let A be an abelian surface def. /k, $char(k) \neq 2$. Let $$\iota:A\to A$$ such that $\iota(x)=-x$. Consider $$Fix(\iota) = A[2] = \{P_1, ..., P_{16}\}.$$ Denote by \tilde{A} the blow up of A along those 16 points and consider the lift $\tilde{\iota}: \tilde{A} \to \tilde{A}$. The Kummer surface associated to A is the K3 surface $X:=\tilde{A}/\tilde{\iota}.$ ## 1 Elliptic fibrations #### Definition An elliptic fibration of a surface S is a surjective morphism $$\mathcal{E}:S \to C$$ where C is a smooth curve defined over the field k, such that: - 1 almost all the fibers are smooth genus 1 curves, - 2 at least one singular fiber, - 3 at least one section (the zero section). # 1 Elliptic fibrations ### 1 Elliptic fibrations - 1 Denote by E the general fiber of \mathcal{E} ; which is an elliptic curve defined over the function field k(C). - 2 Denote by $MW(\mathcal{E})$ the Mordell–Weil group of \mathcal{E} : $$MW(\mathcal{E}) = E(k(C)) = \{\text{sections of } \mathcal{E} : S \to C\}.$$ #### 2 Outline - General introduction & motivations - Preliminaries, setting & goals Setting Goals - Results & examples ## 2 Rational elliptic surfaces #### Definition A rational elliptic surface R is a smooth rational surface endowed with an elliptic fibration $\mathcal{E}_R:R\to\mathbb{P}^1.$ ### Example A pencil of cubics in $\mathbb{P}^2_{\mathbb{Q}}$ ## 2 Rational elliptic surfaces #### Definition A rational elliptic surface R is a smooth rational surface endowed with an elliptic fibration $\mathcal{E}_R:R\to\mathbb{P}^1.$ ### Example A pencil of cubics in $\mathbb{P}^2_{\mathbb{Q}}$ #### Definition An extremal rational elliptic surface R is such that - rank $(MW(\mathcal{E}_R)) = 0$, - R has a maximal Picard number. #### Definition An extremal rational elliptic surface R is such that - ightharpoonup rank $(MW(\mathcal{E}_R)) = 0$, - R has a maximal Picard number. Rick Miranda **Ulf Persson** #### Definition An extremal rational elliptic surface R is such that - rank $(MW(\mathcal{E}_R)) = 0$, - R has a maximal Picard number. ## Theorem (Miranda & Persson 1996) There exist only 16 fiber configurations of extremal rational elliptic surfaces. ### Theorem (Miranda & Persson 1996) There exist only 16 fiber configurations of extremal rational elliptic surfaces. | II,II^* | III, III^* | IV, IV^* | $2I_{0}^{*}$ | |-------------------|----------------------|------------------|------------------| | $II^*, 2I_1$ | III^*, I_2, I_1 | IV^*, I_3, I_1 | $I_4^*, 2I_1$ | | I_1^*, I_4, I_1 | $I_2^*, 2I_2$ | $I_9, 3I_1$ | $I_8, I_2, 2I_1$ | | $2I_5, 2I_1$ | I_4, I_3, I_2, I_1 | $2I_4, 2I_2$ | $4I_3$ | Table: List of the 16 configurations of singular fibers - \triangleright k: a number field; - ▶ *k* : a number field; - ightharpoonup R: a extremal rational elliptic surface def. / k; $$R$$ $\downarrow_{\mathcal{E}_R}$ \mathbb{P}^1 - \triangleright k: a number field; - R: a extremal rational elliptic surface def. / k; - $ightharpoonup \mathcal{E}_R$: the elliptic fibration $$egin{array}{c} R \ \mathcal{E}_R \ \mathbb{P}^1 \end{array}$$ - ▶ k : a number field; - $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k);$ - ightharpoonup R: a extremal rational elliptic surface def. /k; - $ightharpoonup \mathcal{E}_R$: the elliptic fibration def. / k; - $ightharpoonup \mathcal{O}_R$: the zero section def. / k; $$\begin{array}{c} R \\ \downarrow \mathcal{E}_R \\ \mathbb{P}^1 \xrightarrow{d} \mathbb{P}^1 \end{array}$$ - ▶ k : a number field; - $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k);$ - R: a extremal rational elliptic surface def. / k; - $ightharpoonup \mathcal{E}_R$: the elliptic fibration def. / k; - $ightharpoonup \mathcal{O}_R$: the zero section def. / k; - ▶ d : double cover def. / k branched on $P_1 \& P_2$; $$X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1 \longrightarrow R$$ $$\varepsilon_X \bigg| \bigg| \bigg| \varepsilon_R \bigg|$$ $$\mathbb{P}^1 \longrightarrow \mathbb{P}^1$$ - k : a number field; - $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k);$ - R: a extremal rational elliptic surface def. / k; - $ightharpoonup \mathcal{E}_R$: the elliptic fibration def. / k; - $ightharpoonup \mathcal{O}_R$: the zero section def. / k; - ▶ d : double cover def. / k branched on $P_1 \& P_2$; - Assume $\mathcal{E}_R^{-1}(P_1) \& \mathcal{E}_R^{-1}(P_2)$ are smooth, reduced fibers and $G_{\bar{k}}$ -conjugate. $$X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1 \longrightarrow R$$ $$\varepsilon_X \Big| \qquad \qquad \Big| \varepsilon_R$$ $$\mathbb{P}^1 \longrightarrow \mathbb{P}^1$$ - k : a number field; - $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k);$ - R: a extremal rational elliptic surface def. / k; - $ightharpoonup \mathcal{E}_R$: the elliptic fibration def. / k; - $ightharpoonup \mathcal{O}_R$: the zero section def. / k; - ▶ d : double cover def. / k branched on $P_1 \& P_2$; - Assume $\mathcal{E}_R^{-1}(P_1) \& \mathcal{E}_R^{-1}(P_2)$ are smooth, reduced fibers and $G_{\bar{k}}$ -conjugate. - $ightharpoonup \Rightarrow \mathcal{E}_X \& \mathcal{O}_X$ are def. /k. #### 2 Remarks and notations - ▶ $R \times_{\mathbb{P}^1} \mathbb{P}^1$ is endowed with an involution which is the cover involution of $R \times_{\mathbb{P}^1} \mathbb{P}^1 \to R$ induced by d. - ▶ This involution can be extended to an involution of $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ denoted $\tau \in \operatorname{Aut}(X)$. - By construction, τ is a non-symplectic involution on X (i.e. does not preserves the symplectic form defined on X). - ▶ Denote by k_{τ}/k the quadratic extension of k such that $\operatorname{Gal}(k_{\tau}/k) = <\tau>$. R extremal rational elliptic surface $/\ k$ R extremal rational elliptic surface / k $$\begin{split} X &\simeq R \times_{\mathbb{P}^1} \mathbb{P}^1 \text{ K3} \\ \text{surf.} & / & k \text{ obtained} \\ \text{as a double cover} \\ \text{of } R \end{split}$$ R extremal rational elliptic surface / k $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R Determine the fields of definition of the distinct elliptic fibrations on X R extremal rational elliptic surface / k $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R Determine the fields of definition of the distinct elliptic fibrations on X 1 Classify all the possible elliptic fibrations on X. R extremal rational elliptic surface / k $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R Determine the fields of definition of the distinct elliptic fibrations on X - 1 Classify all the possible elliptic fibrations on X. - 2 For each elliptic fibration on X R extremal rational elliptic surface / k $X\simeq R imes_{\mathbb{P}^1}\mathbb{P}^1$ K3 surf. / k obtained as a double cover of R Determine the fields of definition of the distinct elliptic fibrations on X - Classify all the possible elliptic fibrations on X. - For each elliptic fibration on X - 1 determine its field of definition i.e. the field over which the class of a fiber & a section are defined; ## 2 Recap & Goals R extremal rational elliptic surface $/\ k$ $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R Determine the fields of definition of the distinct elliptic fibrations on X - 1 Classify all the possible elliptic fibrations on X. - 2 For each elliptic fibration on X - 1 determine its field of definition i.e. the field over which the class of a fiber & a section are defined; - 2 give an upper bound for the degree of the field over which the Mordell-Weil group of the fibration admits a set of generators. # **Upshot** ## 2 Upshot In order to prove that a genus 1 fibration on X admits a section over a field which depends on the **action** of the cover involution τ on the fibers of the genus 1 fibration. Classify all the possible elliptic fibrations on X. - 1 Classify all the possible elliptic fibrations on X. - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018. - 1 Classify all the possible elliptic fibrations on X. - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018. - 2 For each elliptic fibration on X - 1 Classify all the possible elliptic fibrations on X. - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018. - 2 For each elliptic fibration on X - 1 determine the **type** of the fibration w.r.t. the cover involution τ and **hence** the field of definition of the fibration; - 1 Classify all the possible elliptic fibrations on X. - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018. - 2 For each elliptic fibration on X - 1 determine the **type** of the fibration w.r.t. the cover involution τ and **hence** the field of definition of the fibration; - 2 first determine the Mordell-Weil group of the fibration and then give an upper bound for the degree of the field over which the Mordell-Weil group admits a set of generators. #### Some extra definition #### Definition Let η be an elliptic fibration on X then it is - \triangleright of type 1 with respect to τ , if τ preserves all the fibers of η ; - \triangleright of type 2 with respect to τ , if τ does not preserve all the fibers of η , but maps a fiber of η to another one. In this case τ is induced by an involution of the basis of $\eta: X \to \mathbb{P}^1$. It fixes exactly two fibers and $\tau^{*,1}$ preserves the class of a fiber of η ; - \triangleright of type 3, if τ maps fibers of η to fibers of another elliptic fibration. In this case τ^* does not preserve the class of the generic fiber of η . ¹We denote by τ^* the involution induced by τ on NS(X) ### 3 Outline - ① General introduction & motivations - Preliminaries, setting & goals - Results & examples Results Examples #### 3 Results ## Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović) Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron–Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2. #### 3 Results ## Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović) Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron–Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2. | II, II^* | III, III^* | IV, IV^* | $2I_{0}^{*}$ | |-------------------|----------------------|------------------|------------------| | $II^*, 2I_1$ | III^*, I_2, I_1 | IV^*, I_3, I_1 | $I_4^*, 2I_1$ | | I_1^*, I_4, I_1 | $I_2^*, 2I_2$ | $I_9, 3I_1$ | $I_8, I_2, 2I_1$ | | $2I_5, 2I_1$ | I_4, I_3, I_2, I_1 | $2I_4, 2I_2$ | $4I_3$ | Table: List of the 16 configurations of singular fibers #### 3 Results ## Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović) Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron–Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2. | II, II^* | III, III^* | IV, IV^* | $2I_{0}^{*}$ | |-------------------|----------------------|------------------|------------------| | $II^*, 2I_1$ | III^*, I_2, I_1 | IV^*, I_3, I_1 | $I_4^*, 2I_1$ | | I_1^*, I_4, I_1 | $I_2^st, 2I_2$ | $I_9, 3I_1$ | $I_8, I_2, 2I_1$ | | $2I_5, 2I_1$ | I_4, I_3, I_2, I_1 | $2I_4, 2I_2$ | $4I_3$ | Table: List of the 16 configurations of singular fibers Let R be an extremal rational elliptic surface def. /k such that all reducible fibers of \mathcal{E}_R are distinct. Let R be an extremal rational elliptic surface def. /k such that all reducible fibers of \mathcal{E}_R are distinct. **Goal.** Prove that NS(R) admits a set of generators defined over, at most, a quadratic extension of k. Let R be an extremal rational elliptic surface def. /k such that all reducible fibers of \mathcal{E}_R are distinct. **Goal.** Prove that NS(R) admits a set of generators defined over, at most, a quadratic extension of k. Shioda—Tate formula asserts that: $$\mathrm{NS}(R)/T \simeq \mathsf{MW}(\mathcal{E}_R) \quad \text{with} \quad T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \ i \in S_v}} \Theta_{v,i},$$ $\Theta_{v,i}$ are the fiber components of the reducible fiber $F_v := \mathcal{E}_R^{-1}(v)$; Red := $\{v \in \mathbb{P}^1; F_v \text{ reducible}\}$; n_v the number of fiber components of F_v and $S_v = \{0, \cdots, n_v - 1\}$. Let R be an extremal rational elliptic surface def. /k such that all reducible fibers of \mathcal{E}_R are distinct. **Goal.** Prove that NS(R) admits a set of generators defined over, at most, a quadratic extension of k. 1 Shioda—Tate formula asserts that: $$\mathrm{NS}(R)/T \simeq \mathsf{MW}(\mathcal{E}_R) \quad \text{with} \quad T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \ i \in S_v}} \Theta_{v,i},$$ 2 The absolute Galois group $G_{\bar{k}}$ acts on NS(R) preserving the intersection pairing. $$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \\ i \in S_v}} \Theta_{v,i}$$ $$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \ i \in S_v}} \Theta_{v,i}$$ ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k. $$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \ i \in S_v}} \Theta_{v,i}$$ - ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k. - ▶ **Reducible fibers.** Recall that *R* is an extremal rational elliptic surface such that all the reducible fibers are distinct. $$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \\ i \in S_v}} \Theta_{v,i}$$ - ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k. - ▶ **Reducible fibers.** Recall that *R* is an extremal rational elliptic surface such that all the reducible fibers are distinct. - Miranda & Persson '96 \Rightarrow we have 11 possible configurations. $$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \\ i \in S_v}} \Theta_{v,i}$$ - ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k. - ▶ **Reducible fibers.** Recall that *R* is an extremal rational elliptic surface such that all the reducible fibers are distinct. - Miranda & Persson '96 \Rightarrow we have 11 possible configurations. - Let F_v be a reducible fiber. $$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \\ i \in S_v}} \Theta_{v,i}$$ - ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k. - ▶ **Reducible fibers.** Recall that *R* is an extremal rational elliptic surface such that all the reducible fibers are distinct. - Miranda & Persson '96 \Rightarrow we have 11 possible configurations. - Let F_v be a reducible fiber. - If F_v has exactly 2 fiber components $\Theta_{v,0}$ and $\Theta_{v,1}$ then they are def. /k. Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k. - ightharpoonup Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k. - ▶ The trivial component $\Theta_{v,0}$ is def. /k and intersect at most 2 other fiber components $\Theta_{v,i}$ and $\Theta_{v,i}$. - Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k. - The trivial component $\Theta_{v,0}$ is def. /k and intersect at most 2 other fiber components $\Theta_{v,i}$ and $\Theta_{v,j}$. - $\Theta_{v,i}$ and $\Theta_{v,j}$ are $G_{ar{k}}$ -conjugate & as a pair they form a $G_{ar{k}}$ -orbit. - Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k. - The trivial component $\Theta_{v,0}$ is def. /k and intersect at most 2 other fiber components $\Theta_{v,i}$ and $\Theta_{v,j}$. - ullet $\Theta_{v,i}$ and $\Theta_{v,j}$ are $G_{ar k}$ -conjugate & as a pair they form a $G_{ar k}$ -orbit. - The same happens to all other components that are not def. /k. - Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k. - The trivial component $\Theta_{v,0}$ is def. /k and intersect at most 2 other fiber components $\Theta_{v,i}$ and $\Theta_{v,j}$. - $\Theta_{v,i}$ and $\Theta_{v,j}$ are $G_{\bar{k}}$ -conjugate & as a pair they form a $G_{\bar{k}}$ -orbit. - ullet The same happens to all other components that are not def. /k. - Let us denote by $k_{R,v}$ the quadratic extension /k over which the fiber components $\Theta_{v,i}$ of F_v are defined. ## $\mathsf{MW}(\mathcal{E}_R)$ ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k. - ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k. - Let F_v be a reducible fiber with at least 3 fiber components. - ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k. - Let F_v be a reducible fiber with at least 3 fiber components. - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$ - ▶ Let $S \in \mathsf{MW}(\mathcal{E}_R)$, we know that S is a (-1)-curve in $\mathsf{NS}(R)$ and that $\mathsf{MW}(\mathcal{E}_R)$ is globally def. /k. - Let F_v be a reducible fiber with at least 3 fiber components. - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$ - lacksquare By the action of $G_{ar{k}}$, $$P \mapsto \begin{cases} P \\ P' = S' \cap \Theta_{v,j} \end{cases}$$ - ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k. - Let F_v be a reducible fiber with at least 3 fiber components. - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$ - lacksquare By the action of $G_{ar{k}}$, $$P \mapsto \begin{cases} P & \Theta_{v,i} \\ P' = S' \cap \Theta_{v,j} \end{cases} \qquad \Theta_{v,i} \mapsto \begin{cases} \Theta_{v,i} \\ \Theta_{v,j} \end{cases}$$ - ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that $MW(\mathcal{E}_R)$ is globally def. /k. - ightharpoonup Let F_v be a reducible fiber with at least 3 fiber components. - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$ - ▶ By the action of $G_{\bar{k}}$, $$P \mapsto \begin{cases} P \\ P' = S' \cap \Theta_{v,j} \end{cases} \qquad \Theta_{v,i} \mapsto \begin{cases} \Theta_{v,i} \\ \Theta_{v,j} \end{cases} \Rightarrow \begin{cases} \Theta_{v,i}/k & \& P/k \\ \Theta_{v,i}/k_{R,v} & \& P/k_{R,v} \end{cases}$$ - ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k. - Let F_v be a reducible fiber with at least 3 fiber components. - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$ - ▶ Hence, S is defined either over k or over $k_{R,v}$. #### Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović) #### Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović) Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron-Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2. ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES: #### Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović) - ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES: - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$. #### Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović) - ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES: - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$. - Indeed, extremal RES with repeated reducible fibers have their Néron-Severi group defined, in general, over extensions of larger degree. #### Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović) - ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES: - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$. - Indeed, extremal RES with repeated reducible fibers have their Néron-Severi group defined, in general, over extensions of larger degree. | II, II^* | III, III^* | IV, IV^* | $2I_{0}^{*}$ | |-------------------|----------------------|------------------|------------------| | $II^*, 2I_1$ | III^*, I_2, I_1 | IV^*, I_3, I_1 | $I_4^*, 2I_1$ | | I_1^*, I_4, I_1 | $I_2^*, 2I_2$ | $I_9, 3I_1$ | $I_8, I_2, 2I_1$ | | $2I_5, 2I_1$ | I_4, I_3, I_2, I_1 | $2I_4, 2I_2$ | $4I_3$ | Table: List of the 16 configurations of singular fibers | II,II^* | III, III^* | IV, IV^* | $2I_{0}^{*}$ | |-------------------|----------------------|------------------|------------------| | $II^*, 2I_1$ | III^*, I_2, I_1 | IV^*, I_3, I_1 | $I_4^*, 2I_1$ | | I_1^*, I_4, I_1 | $I_2^*, 2I_2$ | $I_9, 3I_1$ | $I_8, I_2, 2I_1$ | | $2I_5, 2I_1$ | I_4, I_3, I_2, I_1 | $2I_4, 2I_2$ | $4I_3$ | Table: List of the 16 configurations of singular fibers - ▶ R_9 an extremal rational elliptic surface def. / k with singular fibers $I_9 + 3I_1$; - $ightharpoonup \mathcal{E}_{R_9}$ the elliptic fibration def. / k & \mathcal{O}_{R_9} the zero section def. / k; - ▶ The Mordell-Weil group is $MW(\mathcal{E}_{R_9}) = \mathbb{Z}/3\mathbb{Z} = \{\mathcal{O}_{R_9}, t_1, t_2\}.$ 27 Fields of definition of elliptic fibrations #### **Notations** - Let use denote by k_R the quadratic extension of k over which the Néron-Severi group NS(R) admits a set of generators given by fiber components and sections of the elliptic fibration on R. - ▶ Denote by G_R the Galois group $Gal(k_R/k)$. - Let $k_{R,\tau}$ be the compositum of the fields k_R and k_{τ} . #### **Upshot** Prove that a genus 1 fibration on X admits a section over a field which depends on the action of the cover involution τ on the fibers of the genus 1 fibration. ### Theorem (C.-F., Garbagnati, Salgado, Winter, Trbović) Let R be an extremal rational elliptic surface defined over k with distinct reducible fibers. Let X be a K3 surface obtained as a double cover of R branched on two smooth fibers conjugate under $G_{\overline{k}}$, τ the cover involution and η a genus 1 fibration on X. Then the following hold. - i) If η is of type 1 w.r.t. τ then η is defined over k_R and admits a section over $k_{R,\tau}$. - ii) If η is of type 2 then it is defined and admits a section over k. - iii) If η is of type 3 then it is defined and admits a section over $k_{R,\tau}$. Let η be a genus 1 fibration on X. Assume that η is of type 2 w.r.t τ . - Assume that η is of type 2 w.r.t τ . - au does not preserve all the fibers of η , but maps a fiber of η to another one. In this case au is induced by an involution of the basis of $\eta: X \to \mathbb{P}^1$. It fixes exactly two fibers and au^* preserves the class of a fiber of η . - Assume that η is of type 2 w.r.t τ . - ▶ Remark that we assumed that the branch locus is smooth, - Assume that η is of type 2 w.r.t τ . - Remark that we assumed that the branch locus is smooth. - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_R . - Assume that η is of type 2 w.r.t τ . - Remark that we assumed that the branch locus is smooth. - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_{R} . - ▶ We know that \mathcal{E}_X & \mathcal{O}_X are def. / k, - Assume that η is of type 2 w.r.t τ . - Remark that we assumed that the branch locus is smooth, - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_R . - We know that \mathcal{E}_X & \mathcal{O}_X are def. / k, - hence, $\eta = \mathcal{E}_X$ is defined & admits a section /k. - Assume that η is of type 2 w.r.t τ . - Remark that we assumed that the branch locus is smooth, - thus, there is only one fibration of type 2 w.r.t. τ , namely \mathcal{E}_X the one induced by \mathcal{E}_R . - ▶ We know that \mathcal{E}_X & \mathcal{O}_X are def. / k, - hence, $\eta = \mathcal{E}_X$ is defined & admits a section /k. Let η be a genus 1 fibration on X. Assume that η is of type 1 w.r.t τ . - Assume that η is of type 1 w.r.t τ . - τ preserves all the fibers of η . - Assume that η is of type 1 w.r.t τ . - τ preserves all the fibers of η . - Hence, each fiber is the pull-back of a conic C in R (i.e that is a rational curve such that $C.(-K_R) = 2$). - Assume that η is of type 1 w.r.t τ . - Hence, each fiber is the pull-back of a conic C in R. - ▶ NS(R) is generated by curves def. $/k_R$, - Assume that η is of type 1 w.r.t τ . - Hence, each fiber is the pull-back of a conic C in R. - ▶ NS(R) is generated by curves def. $/k_R$, - hence, the class of C has a divisor C_0 whose components are def. $/k_R$. - Assume that η is of type 1 w.r.t τ . - Hence, each fiber is the pull-back of a conic C in R. - ▶ NS(R) is generated by curves def. $/k_R$, - hence, the class of C has a divisor C_0 whose components are def. $/k_R$. - ▶ The fibers of η are fixed by τ , - Assume that η is of type 1 w.r.t τ . - Hence, each fiber is the pull-back of a conic C in R. - ▶ NS(R) is generated by curves def. $/k_R$, - hence, the class of C has a divisor C_0 whose components are def. $/k_R$. - ▶ The fibers of η are fixed by τ , - ullet the pull-back C_0 is also def. / k_R , and - Assume that η is of type 1 w.r.t τ . - Hence, each fiber is the pull-back of a conic C in R. - ▶ NS(R) is generated by curves def. $/k_R$, - hence, the class of C has a divisor C_0 whose components are def. $/k_R$. - ▶ The fibers of η are fixed by τ , - the pull-back C_0 is also def. / k_R , and - its class moves in X giving η . Hence, η is def. / k_R . - Assume that η is of type 1 w.r.t τ . - Hence, each fiber is the pull-back of a conic C in R. - ▶ NS(R) is generated by curves def. $/k_R$, - hence, the class of C has a divisor C_0 whose components are def. $/k_R$. - ▶ The fibers of η are fixed by τ , - the pull-back C_0 is also def. $/\ k_R$, and - its class moves in X giving η . Hence, η is def. $/ k_R$. Let η be a genus 1 fibration on X. Assume that η is of type 3 w.r.t τ . - Assume that η is of type 3 w.r.t τ . - au maps fibers of η to fibers of another elliptic fibration. In this case au^* does not preserve the class of the generic fiber of η . - Assume that η is of type 3 w.r.t τ . - au maps fibers of η to fibers of another elliptic fibration. In this case au^* does not preserve the class of the generic fiber of η . - Hence, each fiber is the pull-back of a non-complete linear system on R. - Assume that η is of type 3 w.r.t τ . - Hence, each fiber is the pull-back of a non-complete linear system on R. - \triangleright NS(R) is generated by curves def. $/k_R$, - Assume that η is of type 3 w.r.t τ . - Hence, each fiber is the pull-back of a non-complete linear system on R. - \triangleright NS(R) is generated by curves def. $/k_R$, - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$. - Assume that η is of type 3 w.r.t τ . - Hence, each fiber is the pull-back of a non-complete linear system on R. - ▶ NS(R) is generated by curves def. $/k_R$, - ullet hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$. - ▶ The fibers of η are **not** fixed by τ , - Assume that η is of type 3 w.r.t τ . - Hence, each fiber is the pull-back of a non-complete linear system on R. - ▶ NS(R) is generated by curves def. $/k_R$, - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$. - ▶ The fibers of η are **not** fixed by τ , - hence, the pull-back D is not preserve by τ and thus def. / $k_{R,\tau}$ (a quad. extension of k_R), and - Assume that η is of type 3 w.r.t τ . - Hence, each fiber is the pull-back of a non-complete linear system on R. - ▶ NS(R) is generated by curves def. $/k_R$, - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$. - ▶ The fibers of η are **not** fixed by τ , - hence, the pull-back D is not preserve by τ and thus def. / $k_{R,\tau}$ (a quad. extension of k_R), and - its class moves in X giving η . Hence, η is def. / $k_{R,\tau}$. # 3 Proof - Type 3 w.r.t. τ Let η be a genus 1 fibration on X. - Assume that η is of type 3 w.r.t τ . - Hence, each fiber is the pull-back of a non-complete linear system on R. - ▶ NS(R) is generated by curves def. $/k_R$, - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$. - ▶ The fibers of η are **not** fixed by τ , - hence, the pull-back D is not preserve by τ and thus def. / $k_{R,\tau}$ (a quad. extension of k_R), and - its class moves in X giving η . Hence, η is def. / $k_{R,\tau}$. Let S be a section of a fibration of type 1 or 3, **KU LEUVEN** - Let S be a section of a fibration of type 1 or 3, - then S is a rational curve on X such that $S^2 = -2$. - Let S be a section of a fibration of type 1 or 3, - then S is a rational curve on X such that $S^2 = -2$. - Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map. - Let S be a section of a fibration of type 1 or 3, - then S is a rational curve on X such that $S^2 = -2$. - Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map. - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R. - ▶ Let S be a section of a fibration of type 1 or 3, - then S is a rational curve on X such that $S^2 = -2$. - ▶ Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map. - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R. - Moreover, all negative curves in R are defined over k_R . Hence, S is defined over $k_{R,\tau}$. - Let S be a section of a fibration of type 1 or 3, - then S is a rational curve on X such that $S^2 = -2$. - Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map. - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R. - Moreover, all negative curves in R are defined over k_R . Hence, S is defined over $k_{R,\tau}$. #### 3 Results # Theorem (C.-F., Garbagnati, Salgado, Winter, Trbović) Let R be an extremal rational elliptic surface defined over k with distinct reducible fibers. Let X be a K3 surface obtained as a double cover of R branched on two smooth fibers conjugate under $G_{\overline{k}}$, τ the cover involution and η a genus 1 fibration on X. Then the following hold. - i) If η is of type 1 w.r.t. τ then η is defined over k_R and admits a section over $k_{R,\tau}$. - ii) If η is of type 2 then it is defined and admits a section over k. - iii) If η is of type 3 then it is defined and admits a section over $k_{R,\tau}$. Reducible fiber $2I_9$; Dual graph $\tilde{A}_8 \oplus \tilde{A}_8$; $\mathsf{MW}(\mathcal{E}) = \mathbb{Z}/3\mathbb{Z}.$