KU LEUVEN

Fields of definition of elliptic fibrations on covers of certain extremal rational elliptic surfaces

V. Cantoral Farfán KU Leuven June 2020

0 Joint work with

Cecilia Salgado

Antonela Trbović

Rosa Winter

Alice Garbagnati

0 Outline

- **1** General introduction & motivations
- 2 Preliminaries, setting & goals
- 3 Results & examples

1 Outline

- General introduction & motivationsK3 surfacesElliptic fibrations
- Preliminaries, setting & goals
- Results & examples

Erich Kähler

Kunihiko Kodaira

Ernst Kummer

Erich Kähler

Kunihiko Kodaira

Ernst Kummer

Definition

An algebraic K3 surface X is a smooth, projective, 2-dimensional variety defined over a field k such that :

- \blacktriangleright $\omega_X \simeq \mathcal{O}_X$,
- ► $H^1(X, \mathcal{O}_X) = 0.$

Examples

- 1 A smooth quartic surface in \mathbb{P}^3_k .
- 2 A Kummer surface.

Examples

- 1 A smooth quartic surface in \mathbb{P}^3_k .
- 2 A Kummer surface.
 - Let A be an abelian surface def. /k, $char(k) \neq 2$.

Examples

- 1 A smooth quartic surface in \mathbb{P}^3_k .
- 2 A Kummer surface.
 - Let A be an abelian surface def. /k, $char(k) \neq 2$. Let $\iota: A \to A$ such that $\iota(x) = -x$. Consider $Fix(\iota) = A[2] = \{P_1, ..., P_{16}\}$.

Examples

- 1 A smooth quartic surface in \mathbb{P}^3_k .
- 2 A Kummer surface.
 - Let A be an abelian surface def. /k, $char(k) \neq 2$. Let $\iota: A \to A$ such that $\iota(x) = -x$. Consider $Fix(\iota) = A[2] = \{P_1, ..., P_{16}\}$.

Denote by \tilde{A} the blow up of A along those 16 points and consider the lift $\tilde{\iota}: \tilde{A} \to \tilde{A}$.

Examples

- 1 A smooth quartic surface in \mathbb{P}^3_k .
- 2 A Kummer surface.
 - Let A be an abelian surface def. /k, $char(k) \neq 2$.

Let
$$\iota:A\to A$$
 such that $\iota(x)=-x$.

Consider
$$Fix(\iota) = A[2] = \{P_1, ..., P_{16}\}.$$

Denote by \tilde{A} the blow up of A along those 16 points and consider the lift $\tilde{\iota}: \tilde{A} \to \tilde{A}$.

The Kummer surface associated to A is the K3 surface $X:=\tilde{A}/\tilde{\iota}.$

1 Elliptic fibrations

Definition

An elliptic fibration of a surface S is a surjective morphism

$$\mathcal{E}:S \to C$$

where C is a smooth curve defined over the field k, such that:

- 1 almost all the fibers are smooth genus 1 curves,
- 2 at least one singular fiber,
- 3 at least one section (the zero section).

1 Elliptic fibrations

1 Elliptic fibrations

- 1 Denote by E the general fiber of \mathcal{E} ; which is an elliptic curve defined over the function field k(C).
- 2 Denote by $MW(\mathcal{E})$ the Mordell–Weil group of \mathcal{E} :

$$MW(\mathcal{E}) = E(k(C)) = \{\text{sections of } \mathcal{E} : S \to C\}.$$

2 Outline

- General introduction & motivations
- Preliminaries, setting & goals Setting Goals
- Results & examples

2 Rational elliptic surfaces

Definition

A rational elliptic surface R is a smooth rational surface endowed with an elliptic fibration $\mathcal{E}_R:R\to\mathbb{P}^1.$

Example

A pencil of cubics in $\mathbb{P}^2_{\mathbb{Q}}$

2 Rational elliptic surfaces

Definition

A rational elliptic surface R is a smooth rational surface endowed with an elliptic fibration $\mathcal{E}_R:R\to\mathbb{P}^1.$

Example

A pencil of cubics in $\mathbb{P}^2_{\mathbb{Q}}$

Definition

An extremal rational elliptic surface R is such that

- rank $(MW(\mathcal{E}_R)) = 0$,
- R has a maximal Picard number.

Definition

An extremal rational elliptic surface R is such that

- ightharpoonup rank $(MW(\mathcal{E}_R)) = 0$,
- R has a maximal Picard number.

Rick Miranda

Ulf Persson

Definition

An extremal rational elliptic surface R is such that

- rank $(MW(\mathcal{E}_R)) = 0$,
- R has a maximal Picard number.

Theorem (Miranda & Persson 1996)

There exist only 16 fiber configurations of extremal rational elliptic surfaces.

Theorem (Miranda & Persson 1996)

There exist only 16 fiber configurations of extremal rational elliptic surfaces.

II,II^*	III, III^*	IV, IV^*	$2I_{0}^{*}$
$II^*, 2I_1$	III^*, I_2, I_1	IV^*, I_3, I_1	$I_4^*, 2I_1$
I_1^*, I_4, I_1	$I_2^*, 2I_2$	$I_9, 3I_1$	$I_8, I_2, 2I_1$
$2I_5, 2I_1$	I_4, I_3, I_2, I_1	$2I_4, 2I_2$	$4I_3$

Table: List of the 16 configurations of singular fibers

- \triangleright k: a number field;

- ▶ *k* : a number field;
- ightharpoonup R: a extremal rational elliptic surface def. / k;

$$R$$
 $\downarrow_{\mathcal{E}_R}$
 \mathbb{P}^1

- \triangleright k: a number field;
- R: a extremal rational elliptic surface def. / k;
- $ightharpoonup \mathcal{E}_R$: the elliptic fibration

$$egin{array}{c} R \ \mathcal{E}_R \ \mathbb{P}^1 \end{array}$$

- ▶ k : a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k);$
- ightharpoonup R: a extremal rational elliptic surface def. /k;
- $ightharpoonup \mathcal{E}_R$: the elliptic fibration def. / k;
- $ightharpoonup \mathcal{O}_R$: the zero section def. / k;

$$\begin{array}{c}
R \\
\downarrow \mathcal{E}_R \\
\mathbb{P}^1 \xrightarrow{d} \mathbb{P}^1
\end{array}$$

- ▶ k : a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k);$
- R: a extremal rational elliptic surface def. / k;
- $ightharpoonup \mathcal{E}_R$: the elliptic fibration def. / k;
- $ightharpoonup \mathcal{O}_R$: the zero section def. / k;
- ▶ d : double cover def. / k branched on $P_1 \& P_2$;

$$X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1 \longrightarrow R$$

$$\varepsilon_X \bigg| \bigg| \bigg| \varepsilon_R \bigg|$$

$$\mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

- k : a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k);$
- R: a extremal rational elliptic surface def. / k;
- $ightharpoonup \mathcal{E}_R$: the elliptic fibration def. / k;
- $ightharpoonup \mathcal{O}_R$: the zero section def. / k;
- ▶ d : double cover def. / k branched on $P_1 \& P_2$;
- Assume $\mathcal{E}_R^{-1}(P_1) \& \mathcal{E}_R^{-1}(P_2)$ are smooth, reduced fibers and $G_{\bar{k}}$ -conjugate.

$$X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1 \longrightarrow R$$

$$\varepsilon_X \Big| \qquad \qquad \Big| \varepsilon_R$$

$$\mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

- k : a number field;
- $G_{\bar{k}} = \operatorname{Gal}(\bar{k}/k);$
- R: a extremal rational elliptic surface def. / k;
- $ightharpoonup \mathcal{E}_R$: the elliptic fibration def. / k;
- $ightharpoonup \mathcal{O}_R$: the zero section def. / k;
- ▶ d : double cover def. / k branched on $P_1 \& P_2$;
- Assume $\mathcal{E}_R^{-1}(P_1) \& \mathcal{E}_R^{-1}(P_2)$ are smooth, reduced fibers and $G_{\bar{k}}$ -conjugate.
- $ightharpoonup \Rightarrow \mathcal{E}_X \& \mathcal{O}_X$ are def. /k.

2 Remarks and notations

- ▶ $R \times_{\mathbb{P}^1} \mathbb{P}^1$ is endowed with an involution which is the cover involution of $R \times_{\mathbb{P}^1} \mathbb{P}^1 \to R$ induced by d.
- ▶ This involution can be extended to an involution of $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ denoted $\tau \in \operatorname{Aut}(X)$.
- By construction, τ is a non-symplectic involution on X (i.e. does not preserves the symplectic form defined on X).
- ▶ Denote by k_{τ}/k the quadratic extension of k such that $\operatorname{Gal}(k_{\tau}/k) = <\tau>$.

R extremal rational elliptic surface $/\ k$

R extremal rational elliptic surface / k

$$\begin{split} X &\simeq R \times_{\mathbb{P}^1} \mathbb{P}^1 \text{ K3} \\ \text{surf.} & / & k \text{ obtained} \\ \text{as a double cover} \\ \text{of } R \end{split}$$

R extremal rational elliptic surface / k

 $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

Determine the fields of definition of the distinct elliptic fibrations on X

R extremal rational elliptic surface / k

 $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

Determine the fields of definition of the distinct elliptic fibrations on X

1 Classify all the possible elliptic fibrations on X.

R extremal rational elliptic surface / k

 $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

Determine the fields of definition of the distinct elliptic fibrations on X

- 1 Classify all the possible elliptic fibrations on X.
- 2 For each elliptic fibration on X

R extremal rational elliptic surface / k

 $X\simeq R imes_{\mathbb{P}^1}\mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

Determine the fields of definition of the distinct elliptic fibrations on X

- Classify all the possible elliptic fibrations on X.
- For each elliptic fibration on X
 - 1 determine its field of definition i.e. the field over which the class of a fiber & a section are defined;

2 Recap & Goals

R extremal rational elliptic surface $/\ k$

 $X \simeq R \times_{\mathbb{P}^1} \mathbb{P}^1$ K3 surf. / k obtained as a double cover of R

Determine the fields of definition of the distinct elliptic fibrations on X

- 1 Classify all the possible elliptic fibrations on X.
- 2 For each elliptic fibration on X
 - 1 determine its field of definition i.e. the field over which the class of a fiber & a section are defined;
 - 2 give an upper bound for the degree of the field over which the Mordell-Weil group of the fibration admits a set of generators.

Upshot

2 Upshot

In order to prove that a genus 1 fibration on X admits a section over a field which depends on the **action** of the cover involution τ on the fibers of the genus 1 fibration.

Classify all the possible elliptic fibrations on X.

- 1 Classify all the possible elliptic fibrations on X.
 - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018.

- 1 Classify all the possible elliptic fibrations on X.
 - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018.
- 2 For each elliptic fibration on X

- 1 Classify all the possible elliptic fibrations on X.
 - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018.
- 2 For each elliptic fibration on X
 - 1 determine the **type** of the fibration w.r.t. the cover involution τ and **hence** the field of definition of the fibration;

- 1 Classify all the possible elliptic fibrations on X.
 - 1 Niemeier '73, Nishiyama '96 and Garbagnati & Salgado 2018.
- 2 For each elliptic fibration on X
 - 1 determine the **type** of the fibration w.r.t. the cover involution τ and **hence** the field of definition of the fibration;
 - 2 first determine the Mordell-Weil group of the fibration and then give an upper bound for the degree of the field over which the Mordell-Weil group admits a set of generators.

Some extra definition

Definition

Let η be an elliptic fibration on X then it is

- \triangleright of type 1 with respect to τ , if τ preserves all the fibers of η ;
- \triangleright of type 2 with respect to τ , if τ does not preserve all the fibers of η , but maps a fiber of η to another one. In this case τ is induced by an involution of the basis of $\eta: X \to \mathbb{P}^1$. It fixes exactly two fibers and $\tau^{*,1}$ preserves the class of a fiber of η ;
- \triangleright of type 3, if τ maps fibers of η to fibers of another elliptic fibration. In this case τ^* does not preserve the class of the generic fiber of η .

¹We denote by τ^* the involution induced by τ on NS(X)

3 Outline

- ① General introduction & motivations
- Preliminaries, setting & goals
- Results & examples Results Examples

3 Results

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron–Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2.

3 Results

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron–Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2.

II, II^*	III, III^*	IV, IV^*	$2I_{0}^{*}$
$II^*, 2I_1$	III^*, I_2, I_1	IV^*, I_3, I_1	$I_4^*, 2I_1$
I_1^*, I_4, I_1	$I_2^*, 2I_2$	$I_9, 3I_1$	$I_8, I_2, 2I_1$
$2I_5, 2I_1$	I_4, I_3, I_2, I_1	$2I_4, 2I_2$	$4I_3$

Table: List of the 16 configurations of singular fibers

3 Results

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron–Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2.

II, II^*	III, III^*	IV, IV^*	$2I_{0}^{*}$
$II^*, 2I_1$	III^*, I_2, I_1	IV^*, I_3, I_1	$I_4^*, 2I_1$
I_1^*, I_4, I_1	$I_2^st, 2I_2$	$I_9, 3I_1$	$I_8, I_2, 2I_1$
$2I_5, 2I_1$	I_4, I_3, I_2, I_1	$2I_4, 2I_2$	$4I_3$

Table: List of the 16 configurations of singular fibers

Let R be an extremal rational elliptic surface def. /k such that all reducible fibers of \mathcal{E}_R are distinct.

Let R be an extremal rational elliptic surface def. /k such that all reducible fibers of \mathcal{E}_R are distinct.

Goal. Prove that NS(R) admits a set of generators defined over, at most, a quadratic extension of k.

Let R be an extremal rational elliptic surface def. /k such that all reducible fibers of \mathcal{E}_R are distinct.

Goal. Prove that NS(R) admits a set of generators defined over, at most, a quadratic extension of k.

Shioda—Tate formula asserts that:

$$\mathrm{NS}(R)/T \simeq \mathsf{MW}(\mathcal{E}_R) \quad \text{with} \quad T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \ i \in S_v}} \Theta_{v,i},$$

 $\Theta_{v,i}$ are the fiber components of the reducible fiber $F_v := \mathcal{E}_R^{-1}(v)$; Red := $\{v \in \mathbb{P}^1; F_v \text{ reducible}\}$; n_v the number of fiber components of F_v and $S_v = \{0, \cdots, n_v - 1\}$.

Let R be an extremal rational elliptic surface def. /k such that all reducible fibers of \mathcal{E}_R are distinct.

Goal. Prove that NS(R) admits a set of generators defined over, at most, a quadratic extension of k.

1 Shioda—Tate formula asserts that:

$$\mathrm{NS}(R)/T \simeq \mathsf{MW}(\mathcal{E}_R) \quad \text{with} \quad T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \ i \in S_v}} \Theta_{v,i},$$

2 The absolute Galois group $G_{\bar{k}}$ acts on NS(R) preserving the intersection pairing.

$$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \\ i \in S_v}} \Theta_{v,i}$$

$$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \ i \in S_v}} \Theta_{v,i}$$

▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k.

$$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \ i \in S_v}} \Theta_{v,i}$$

- ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k.
- ▶ **Reducible fibers.** Recall that *R* is an extremal rational elliptic surface such that all the reducible fibers are distinct.

$$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \\ i \in S_v}} \Theta_{v,i}$$

- ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k.
- ▶ **Reducible fibers.** Recall that *R* is an extremal rational elliptic surface such that all the reducible fibers are distinct.
 - Miranda & Persson '96 \Rightarrow we have 11 possible configurations.

$$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \\ i \in S_v}} \Theta_{v,i}$$

- ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k.
- ▶ **Reducible fibers.** Recall that *R* is an extremal rational elliptic surface such that all the reducible fibers are distinct.
 - Miranda & Persson '96 \Rightarrow we have 11 possible configurations.
 - Let F_v be a reducible fiber.

$$T = \langle \mathcal{O}, F \rangle \oplus \sum_{\substack{v \in \mathsf{Red} \\ i \in S_v}} \Theta_{v,i}$$

- ▶ The zero section \mathcal{O} & the class of a smooth fiber F are def. /k.
- ▶ **Reducible fibers.** Recall that *R* is an extremal rational elliptic surface such that all the reducible fibers are distinct.
 - Miranda & Persson '96 \Rightarrow we have 11 possible configurations.
 - Let F_v be a reducible fiber.
 - If F_v has exactly 2 fiber components $\Theta_{v,0}$ and $\Theta_{v,1}$ then they are def. /k.

Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k.

- ightharpoonup Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k.
- ▶ The trivial component $\Theta_{v,0}$ is def. /k and intersect at most 2 other fiber components $\Theta_{v,i}$ and $\Theta_{v,i}$.

- Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k.
- The trivial component $\Theta_{v,0}$ is def. /k and intersect at most 2 other fiber components $\Theta_{v,i}$ and $\Theta_{v,j}$.
 - $\Theta_{v,i}$ and $\Theta_{v,j}$ are $G_{ar{k}}$ -conjugate & as a pair they form a $G_{ar{k}}$ -orbit.

- Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k.
- The trivial component $\Theta_{v,0}$ is def. /k and intersect at most 2 other fiber components $\Theta_{v,i}$ and $\Theta_{v,j}$.
 - ullet $\Theta_{v,i}$ and $\Theta_{v,j}$ are $G_{ar k}$ -conjugate & as a pair they form a $G_{ar k}$ -orbit.
 - The same happens to all other components that are not def. /k.

- Assume that F_v has at least 3 fiber components. We know that F_v is globally def. /k.
- The trivial component $\Theta_{v,0}$ is def. /k and intersect at most 2 other fiber components $\Theta_{v,i}$ and $\Theta_{v,j}$.
 - $\Theta_{v,i}$ and $\Theta_{v,j}$ are $G_{\bar{k}}$ -conjugate & as a pair they form a $G_{\bar{k}}$ -orbit.
 - ullet The same happens to all other components that are not def. /k.
- Let us denote by $k_{R,v}$ the quadratic extension /k over which the fiber components $\Theta_{v,i}$ of F_v are defined.

$\mathsf{MW}(\mathcal{E}_R)$

▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k.

- ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k.
- Let F_v be a reducible fiber with at least 3 fiber components.

- ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k.
- Let F_v be a reducible fiber with at least 3 fiber components.
 - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$

- ▶ Let $S \in \mathsf{MW}(\mathcal{E}_R)$, we know that S is a (-1)-curve in $\mathsf{NS}(R)$ and that $\mathsf{MW}(\mathcal{E}_R)$ is globally def. /k.
- Let F_v be a reducible fiber with at least 3 fiber components.
 - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$
- lacksquare By the action of $G_{ar{k}}$,

$$P \mapsto \begin{cases} P \\ P' = S' \cap \Theta_{v,j} \end{cases}$$

- ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k.
- Let F_v be a reducible fiber with at least 3 fiber components.
 - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$
- lacksquare By the action of $G_{ar{k}}$,

$$P \mapsto \begin{cases} P & \Theta_{v,i} \\ P' = S' \cap \Theta_{v,j} \end{cases} \qquad \Theta_{v,i} \mapsto \begin{cases} \Theta_{v,i} \\ \Theta_{v,j} \end{cases}$$

- ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that $MW(\mathcal{E}_R)$ is globally def. /k.
- ightharpoonup Let F_v be a reducible fiber with at least 3 fiber components.
 - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$
- ▶ By the action of $G_{\bar{k}}$,

$$P \mapsto \begin{cases} P \\ P' = S' \cap \Theta_{v,j} \end{cases} \qquad \Theta_{v,i} \mapsto \begin{cases} \Theta_{v,i} \\ \Theta_{v,j} \end{cases} \Rightarrow \begin{cases} \Theta_{v,i}/k & \& P/k \\ \Theta_{v,i}/k_{R,v} & \& P/k_{R,v} \end{cases}$$

- ▶ Let $S \in MW(\mathcal{E}_R)$, we know that S is a (-1)-curve in NS(R) and that MW (\mathcal{E}_R) is globally def. /k.
- Let F_v be a reducible fiber with at least 3 fiber components.
 - S intersects a unique fiber component $\Theta_{v,i}$ of F_v in the point $P:=S\cap\Theta_{v,i}.$
- ▶ Hence, S is defined either over k or over $k_{R,v}$.

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k. Assume that all reducible fibers of the elliptic fibration are distinct. Then the Néron-Severi group $\mathrm{NS}(R)$ admits generators defined over a field extension of k of degree at most 2.

➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES:

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

- ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES:
 - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$.

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

- ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES:
 - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$.
- Indeed, extremal RES with repeated reducible fibers have their Néron-Severi group defined, in general, over extensions of larger degree.

Lemma (C.-F., Garbagnati, Salgado, Winter, Trbović)

- ➤ This Lemma is excluding 5 out of 16 configuration of reducible fibers on extremal RES:
 - $(2I_0^*)$, $(2I_5, 2I_1)$, $(2I_4, 2I_2)$, $(I_2^*, 2I_2)$ & $(4I_3)$.
- Indeed, extremal RES with repeated reducible fibers have their Néron-Severi group defined, in general, over extensions of larger degree.

II, II^*	III, III^*	IV, IV^*	$2I_{0}^{*}$
$II^*, 2I_1$	III^*, I_2, I_1	IV^*, I_3, I_1	$I_4^*, 2I_1$
I_1^*, I_4, I_1	$I_2^*, 2I_2$	$I_9, 3I_1$	$I_8, I_2, 2I_1$
$2I_5, 2I_1$	I_4, I_3, I_2, I_1	$2I_4, 2I_2$	$4I_3$

Table: List of the 16 configurations of singular fibers

II,II^*	III, III^*	IV, IV^*	$2I_{0}^{*}$
$II^*, 2I_1$	III^*, I_2, I_1	IV^*, I_3, I_1	$I_4^*, 2I_1$
I_1^*, I_4, I_1	$I_2^*, 2I_2$	$I_9, 3I_1$	$I_8, I_2, 2I_1$
$2I_5, 2I_1$	I_4, I_3, I_2, I_1	$2I_4, 2I_2$	$4I_3$

Table: List of the 16 configurations of singular fibers

- ▶ R_9 an extremal rational elliptic surface def. / k with singular fibers $I_9 + 3I_1$;
- $ightharpoonup \mathcal{E}_{R_9}$ the elliptic fibration def. / k & \mathcal{O}_{R_9} the zero section def. / k;
- ▶ The Mordell-Weil group is $MW(\mathcal{E}_{R_9}) = \mathbb{Z}/3\mathbb{Z} = \{\mathcal{O}_{R_9}, t_1, t_2\}.$

27 Fields of definition of elliptic fibrations

Notations

- Let use denote by k_R the quadratic extension of k over which the Néron-Severi group NS(R) admits a set of generators given by fiber components and sections of the elliptic fibration on R.
- ▶ Denote by G_R the Galois group $Gal(k_R/k)$.
- Let $k_{R,\tau}$ be the compositum of the fields k_R and k_{τ} .

Upshot

Prove that a genus 1 fibration on X admits a section over a field which depends on the action of the cover involution τ on the fibers of the genus 1 fibration.

Theorem (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k with distinct reducible fibers. Let X be a K3 surface obtained as a double cover of R branched on two smooth fibers conjugate under $G_{\overline{k}}$, τ the cover involution and η a genus 1 fibration on X. Then the following hold.

- i) If η is of type 1 w.r.t. τ then η is defined over k_R and admits a section over $k_{R,\tau}$.
- ii) If η is of type 2 then it is defined and admits a section over k.
- iii) If η is of type 3 then it is defined and admits a section over $k_{R,\tau}$.

Let η be a genus 1 fibration on X.

Assume that η is of type 2 w.r.t τ .

- Assume that η is of type 2 w.r.t τ .
 - au does not preserve all the fibers of η , but maps a fiber of η to another one. In this case au is induced by an involution of the basis of $\eta: X \to \mathbb{P}^1$. It fixes exactly two fibers and au^* preserves the class of a fiber of η .

- Assume that η is of type 2 w.r.t τ .
- ▶ Remark that we assumed that the branch locus is smooth,

- Assume that η is of type 2 w.r.t τ .
- Remark that we assumed that the branch locus is smooth.
 - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_R .

- Assume that η is of type 2 w.r.t τ .
- Remark that we assumed that the branch locus is smooth.
 - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_{R} .
- ▶ We know that \mathcal{E}_X & \mathcal{O}_X are def. / k,

- Assume that η is of type 2 w.r.t τ .
- Remark that we assumed that the branch locus is smooth,
 - thus, there is only one fibration of type 2 w.r.t. au, namely \mathcal{E}_X the one induced by \mathcal{E}_R .
- We know that \mathcal{E}_X & \mathcal{O}_X are def. / k,
 - hence, $\eta = \mathcal{E}_X$ is defined & admits a section /k.

- Assume that η is of type 2 w.r.t τ .
- Remark that we assumed that the branch locus is smooth,
 - thus, there is only one fibration of type 2 w.r.t. τ , namely \mathcal{E}_X the one induced by \mathcal{E}_R .
- ▶ We know that \mathcal{E}_X & \mathcal{O}_X are def. / k,
 - hence, $\eta = \mathcal{E}_X$ is defined & admits a section /k.

Let η be a genus 1 fibration on X.

Assume that η is of type 1 w.r.t τ .

- Assume that η is of type 1 w.r.t τ .
 - τ preserves all the fibers of η .

- Assume that η is of type 1 w.r.t τ .
 - τ preserves all the fibers of η .
 - Hence, each fiber is the pull-back of a conic C in R (i.e that is a rational curve such that $C.(-K_R) = 2$).

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.
- ▶ The fibers of η are fixed by τ ,

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.
- ▶ The fibers of η are fixed by τ ,
 - ullet the pull-back C_0 is also def. / k_R , and

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.
- ▶ The fibers of η are fixed by τ ,
 - the pull-back C_0 is also def. / k_R , and
 - its class moves in X giving η . Hence, η is def. / k_R .

- Assume that η is of type 1 w.r.t τ .
 - Hence, each fiber is the pull-back of a conic C in R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of C has a divisor C_0 whose components are def. $/k_R$.
- ▶ The fibers of η are fixed by τ ,
 - the pull-back C_0 is also def. $/\ k_R$, and
 - its class moves in X giving η . Hence, η is def. $/ k_R$.

Let η be a genus 1 fibration on X.

Assume that η is of type 3 w.r.t τ .

- Assume that η is of type 3 w.r.t τ .
 - au maps fibers of η to fibers of another elliptic fibration. In this case au^* does not preserve the class of the generic fiber of η .

- Assume that η is of type 3 w.r.t τ .
 - au maps fibers of η to fibers of another elliptic fibration. In this case au^* does not preserve the class of the generic fiber of η .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- \triangleright NS(R) is generated by curves def. $/k_R$,

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- \triangleright NS(R) is generated by curves def. $/k_R$,
 - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - ullet hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.
- ▶ The fibers of η are **not** fixed by τ ,

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.
- ▶ The fibers of η are **not** fixed by τ ,
 - hence, the pull-back D is not preserve by τ and thus def. / $k_{R,\tau}$ (a quad. extension of k_R), and

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.
- ▶ The fibers of η are **not** fixed by τ ,
 - hence, the pull-back D is not preserve by τ and thus def. / $k_{R,\tau}$ (a quad. extension of k_R), and
 - its class moves in X giving η . Hence, η is def. / $k_{R,\tau}$.

3 Proof - Type 3 w.r.t. τ

Let η be a genus 1 fibration on X.

- Assume that η is of type 3 w.r.t τ .
 - Hence, each fiber is the pull-back of a non-complete linear system on R.
- ▶ NS(R) is generated by curves def. $/k_R$,
 - hence, the class of the non-complete linear system on R has a divisor D whose components are def. $/k_R$.
- ▶ The fibers of η are **not** fixed by τ ,
 - hence, the pull-back D is not preserve by τ and thus def. / $k_{R,\tau}$ (a quad. extension of k_R), and
 - its class moves in X giving η . Hence, η is def. / $k_{R,\tau}$.

Let S be a section of a fibration of type 1 or 3,

KU LEUVEN

- Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.

- Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.
- Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map.

- Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.
- Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map.
 - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R.

- ▶ Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.
- ▶ Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map.
 - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R.
 - Moreover, all negative curves in R are defined over k_R . Hence, S is defined over $k_{R,\tau}$.

- Let S be a section of a fibration of type 1 or 3,
 - then S is a rational curve on X such that $S^2 = -2$.
- Let $\pi: X \to X/\tau \simeq_{bir} R$ be the quotient map.
 - $\pi(S)$ is either a (-1)-curve or a (-2)-curve in R.
 - Moreover, all negative curves in R are defined over k_R . Hence, S is defined over $k_{R,\tau}$.

3 Results

Theorem (C.-F., Garbagnati, Salgado, Winter, Trbović)

Let R be an extremal rational elliptic surface defined over k with distinct reducible fibers. Let X be a K3 surface obtained as a double cover of R branched on two smooth fibers conjugate under $G_{\overline{k}}$, τ the cover involution and η a genus 1 fibration on X. Then the following hold.

- i) If η is of type 1 w.r.t. τ then η is defined over k_R and admits a section over $k_{R,\tau}$.
- ii) If η is of type 2 then it is defined and admits a section over k.
- iii) If η is of type 3 then it is defined and admits a section over $k_{R,\tau}$.

Reducible fiber $2I_9$; Dual graph $\tilde{A}_8 \oplus \tilde{A}_8$; $\mathsf{MW}(\mathcal{E}) = \mathbb{Z}/3\mathbb{Z}.$

